已知各項都是正數(shù)的等比數(shù)列{an}中,存在兩項 數(shù)學(xué)公式使得數(shù)學(xué)公式,且a7=a6+2a5,則數(shù)學(xué)公式的最小值是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
A
分析:分析題目已知正項等比數(shù)列{an}滿足:a7=a6+2a5,可以根據(jù)等比數(shù)列通項公式解出q的值.由存在兩項 使得,可解得m+n=6.將所求乘以(m+n),利用基本不等式,即可得到答案.
解答:因為已知正項等比數(shù)列{an}滿足:a7=a6+2a5,
則有a1q6=a1q5+2a1q4
即:q2-q-2=0,解得:q=2,q=-1,又因為時正項等比數(shù)列故q=2.
∵存在兩項 使得,即a1×=4a1,∴m+n=6
=(m+n)()=[5++]≥(5+2)= (當且僅當=時取等號)
的最小值是
故選 A
點評:此題主要考查基本不等式的應(yīng)用問題,其中涉及到等比數(shù)列通項的問題,屬于綜合性試題,考查學(xué)生的靈活應(yīng)用能力,屬于中檔題目.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•重慶一模)設(shè)數(shù)列{an}的各項都為正數(shù),其前n項和為Sn,已知對任意n∈N*,2
Sn
是an+2 和an的等比中項.
(Ⅰ)證明數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)證明
1
S1
+
1
S2
+…+
1
Sn
<1;
(Ⅲ)設(shè)集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使對滿足n>m 的一切正整數(shù)n,不等式2Sn-4200>
an2
2
恒成立,求這樣的正整數(shù)m共有多少個?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:福建省三明一中2012屆高三11月學(xué)段考試數(shù)學(xué)理科試題 題型:044

已知等比數(shù)列{an}的各項都是正數(shù),且2a1+3a2=1,a3是9a2與a6的等比中項,

(Ⅰ)求{an}的通項公式;

(Ⅱ)設(shè)數(shù)列{bn}滿足bn,求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆重慶市七區(qū)高三第一次調(diào)研測試數(shù)學(xué)理卷 題型:解答題

(本小題滿分12分)
設(shè)數(shù)列的各項都為正數(shù),其前項和為,已知對任意,的等比中項.
(Ⅰ)證明數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;
(Ⅱ)證明;
(Ⅲ)設(shè)集合,,且,若存在,使對滿足的一切正整數(shù),不等式恒成立,求這樣的正整數(shù)共有多少個?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年重慶市七區(qū)高三第一次調(diào)研測試數(shù)學(xué)理卷 題型:解答題

(本小題滿分12分)

設(shè)數(shù)列的各項都為正數(shù),其前項和為,已知對任意,的等比中項.

(Ⅰ)證明數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;

(Ⅱ)證明;

(Ⅲ)設(shè)集合,且,若存在,使對滿足 的一切正整數(shù),不等式恒成立,求這樣的正整數(shù)共有多少個?

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年重慶市七區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

設(shè)數(shù)列{an}的各項都為正數(shù),其前n項和為Sn,已知對任意n∈N*,2是an+2 和an的等比中項.
(Ⅰ)證明數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)證明++…+<1;
(Ⅲ)設(shè)集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使對滿足n>m 的一切正整數(shù)n,不等式2Sn-4200>恒成立,求這樣的正整數(shù)m共有多少個?

查看答案和解析>>

同步練習冊答案