(本小題滿分12分)
設(shè)數(shù)列的各項都為正數(shù),其前項和為,已知對任意,是 和的等比中項.
(Ⅰ)證明數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;
(Ⅱ)證明;
(Ⅲ)設(shè)集合,,且,若存在∈,使對滿足 的一切正整數(shù),不等式恒成立,求這樣的正整數(shù)共有多少個?
解:(Ⅰ)由已知,,且. ………………………1分
當(dāng)時,,解得. ……………………………2分
當(dāng)時,有.
于是,即.
于是,即.
因為,所以.
故數(shù)列是首項為2,公差為2的等差數(shù)列,且.……………………4分
(Ⅱ)因為,則,…………………………………5分
所以…7分
(Ⅲ)由,得,所以. …… 9分
由題設(shè),,,…,,,,…,.
因為∈M,所以,,…,均滿足條件.…………………10分
且這些數(shù)組成首項為,公差為的等差數(shù)列.
設(shè)這個等差數(shù)列共有項,則,解得.
故集合M中滿足條件的正整數(shù)共有450個.…………………………12分
【解析】略
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2011屆重慶市八中高三第二次月考理科數(shù)學(xué)卷 題型:解答題
(本小題滿分12分)已知數(shù)列的首項為,前項和為,且
(1)求證:數(shù)列成等比數(shù)列;
(2)令,求函數(shù)在點(diǎn)處的導(dǎo)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆重慶市七區(qū)高三第一次調(diào)研測試數(shù)學(xué)理卷 題型:解答題
(本小題滿分12分)
設(shè)數(shù)列的各項都為正數(shù),其前項和為,已知對任意,是和的等比中項.
(Ⅰ)證明數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;
(Ⅱ)證明;
(Ⅲ)設(shè)集合,,且,若存在∈,使對滿足的一切正整數(shù),不等式恒成立,求這樣的正整數(shù)共有多少個?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年重慶市高三第二次月考理科數(shù)學(xué)卷 題型:解答題
(本小題滿分12分)已知數(shù)列的首項為,前項和為,且
(1)求證:數(shù)列成等比數(shù)列;
(2)令,求函數(shù)在點(diǎn)處的導(dǎo)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年重慶市七區(qū)高三第一次調(diào)研測試數(shù)學(xué)理卷 題型:解答題
(本小題滿分12分)
某地設(shè)計修建一條26公里長的輕軌交通路線,該輕軌交通路線的起點(diǎn)站和終點(diǎn)站已建好,余下工程只需要在該段路線的起點(diǎn)站和終點(diǎn)站之間修建輕軌道路和輕軌中間站,相鄰兩輕軌站之間的距離均為公里.經(jīng)預(yù)算,修建一個輕軌中間站的費(fèi)用為2000萬元,修建公里的輕軌道路費(fèi)用為()萬元.設(shè)余下工程的總費(fèi)用為萬元.
(Ⅰ)試將表示成的函數(shù);
(Ⅱ)需要修建多少個輕軌中間站才能使最小?其最小值為多少萬元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com