【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),若以直角坐標系中的原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為為參數(shù)).
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)若曲線與曲線有公共點,求的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】【選修4-4:坐標系與參數(shù)方程】
在平面直角坐標系中,曲線的參數(shù)方程為: (為參數(shù), ),將曲線經(jīng)過伸縮變換: 得到曲線.
(1)以原點為極點, 軸的正半軸為極軸建立坐標系,求的極坐標方程;
(2)若直線(為參數(shù))與相交于兩點,且,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)集合,如果對于的每一個含有個元素的子集,中必有個元素的和等于,稱正整數(shù)為集合的一個“相關(guān)數(shù)”
(1)當時,判斷和是否為集合的“相關(guān)數(shù)”,說明理由;
(2)若為集合的“相關(guān)數(shù)”,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,幾何體EF-ABCD中,四邊形CDEF是正方形,四邊形ABCD為直角梯形,AB∥CD,AD⊥DC,△ACB是腰長為2的等腰直角三角形,平面CDEF⊥平面ABCD.
(1)求證:BC⊥AF;
(2)求幾何體EF-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若是函數(shù)的一個極值點,求實數(shù)的值及在內(nèi)的最小值;
(Ⅱ)當時,求證:函數(shù)存在唯一的極小值點,且.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù),其中.
(Ⅰ)當時,討論函數(shù)的單調(diào)性;
(Ⅱ)若函數(shù)僅在處有極值,求的取值范圍;
(Ⅲ)若對于任意的,不等式上恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,,底面ABC.
(1)求證:平面平面PBC;
(2)若,M是PB的中點,求AM與平面PBC所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某籃球隊對籃球運動員的籃球技能進行統(tǒng)計研究,針對籃球運動員在投籃命中時,運動員到籃筐中心的水平距離這項指標,對某運動員進行了若干場次的統(tǒng)計,依據(jù)統(tǒng)計結(jié)果繪制如下頻率分布直方圖:
(I)依據(jù)頻率分布直方圖估算該運動員投籃命中時,他到籃筐中心的水平距離的中位數(shù);
(II)在某場比賽中,考察他前4次投籃命中時到籃筐中心的水平距離的情況,并且規(guī)定:運動員投籃命中時,他到籃筐中心的水平距離不少于4米的記1分,否則扣掉1分.用隨機變量X表示第4次投籃后的總分,將頻率視為概率,求X的分布列和均值.
查看答案和解析>>