設(shè)x,y滿(mǎn)足約束條件
x+y-7≥0
x-3y+1≤0
3x-y-5≥0
,則z=2x+y的最小值為( 。
A、5B、8C、10D、12
考點(diǎn):簡(jiǎn)單線(xiàn)性規(guī)劃
專(zhuān)題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義,即可得到結(jié)論.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
由z=2x+y得y=-2x+z,
平移直線(xiàn)y=-2x+z,
由圖象可知當(dāng)直線(xiàn)y=-2x+z經(jīng)過(guò)點(diǎn)A時(shí),直線(xiàn)的截距最小,
此時(shí)z最小,
x+y-7=0
3x-y-5=0
,解得
x=3
y=4
,
即A(3,4),此時(shí)z=3×2+4=10,
故選:C.
點(diǎn)評(píng):本題主要考查線(xiàn)性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在?ABCD中,點(diǎn)M在AB上,且AM=3MB,點(diǎn)N在BD上,且
BN
BD
,C、M、N三點(diǎn)共線(xiàn),求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,滿(mǎn)足Sn+2=2an(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令bn=log2an,Tn=
b1
a1
+
b2
a2
+…+
bn
an
,求滿(mǎn)足Tn
15
8
的最大正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知D是不等式組
x-2y≥0
x+3y≥0
所確定的平面區(qū)域,則圓x2+y2=4與D圍成的區(qū)域面積為(  )
A、
π
2
B、
4
C、π
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=丨x-a丨-2a+1(a∈R),若對(duì)任意x∈[1,2],f(x)≥0恒成立,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x,y滿(mǎn)足條件
x+y-2≥0
x-y-2≤0
y≤2
,則z=x+y的最大值為( 。
A、2
B、4
C、2
5
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知無(wú)窮數(shù)列{an}是等差數(shù)列,公差為d,前n項(xiàng)和為Sn,則( 。
A、當(dāng)首項(xiàng)a1>0,d<0時(shí),數(shù)列{an}是遞減數(shù)列且Sn有最大值
B、當(dāng)首項(xiàng)a1<0,d<0時(shí),數(shù)列{an}是遞減數(shù)列且Sn有最小值
C、當(dāng)首項(xiàng)a1>0,d>0時(shí),數(shù)列{an}是遞增數(shù)列且Sn有最大值
D、當(dāng)首項(xiàng)a1<0,d>0時(shí),數(shù)列{an}是遞減數(shù)列且Sn有最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ex,g(x)=f(x)-ax2-bx-1,其中e為自然對(duì)數(shù)的底數(shù).
(Ⅰ)已知x1,x2∈R,求證:
1
2
[f(x1)+f(x2)]≥f(
x1+x2
2
);
(Ⅱ)函數(shù)h(x)是g(x)的導(dǎo)函數(shù),求函數(shù)h(x)在區(qū)間[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x,y滿(mǎn)足
x-4y+3≤0
x+y-4≤0
x≥1
,點(diǎn)(x,y)對(duì)應(yīng)的區(qū)域的面積
 
,
x2+y2
xy
的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案