精英家教網 > 高中數學 > 題目詳情

不等式在[-1,1]上恒成立,則+的取值范圍是                  

 

 

【答案】

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f(x)是定義在[-1,1]上的奇函數,且f (1)=1,若m,n∈[-1,1],m+n≠0時有
f(m)+f(n)
m+n
>0.
(1)判斷f (x)在[-1,1]上的單調性,并證明你的結論;
(2)解不等式:f(x+
1
2
)<f(
1
x-1
);
(3)若f(x)≤t2-2at+1對所有x∈[-1,1],a∈[-1,1]恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在[1,+∞)上的函數f(x)=
4-8|x-
3
2
|,1≤x≤2
1
2
f(
x
2
),x>2
.給出下列結論:
①函數f(x)的值域為[0,4];
②關于x的方程f(x)=(
1
2
)
n
(n∈N*)
有2n+4個不相等的實數根;
③當x∈[2n-1,2n](n∈N*)時,函數f(x)的圖象與x軸圍成的圖形面積為S,則S=2;
④存在x0∈[1,8],使得不等式x0f(x0)>6成立,
其中你認為正確的所有結論的序號為
①③
①③

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
ax+b
x2+1
是定義在(-1,1)上的奇函數,且f(
1
2
)=
2
5

(1)確定函數f(x)的解析式;
(2)當x∈(-1,1)時判斷函數f(x)的單調性,并證明;
(3)解不等式f(2x-1)+f(x)<0.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)是定義在[-1,1]上的奇函數,且f(-1)=1,若對任意a、b∈[-1,1],a+b≠0,都有
f(a)+f(b)a+b
<0.
(1)判斷f(x)在[-1,1]上是增函數還是減函數,并證明你的結論;
(2)解不等式f(1-x)+f(1-x2)>0;
(3)若f(x)≤m2-2am+1對所有x[-1,1],a∈[-1,1]恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(附加題)已知定義在[-1,1]上的奇函數f(x),在x∈(0,1]時,f(x)=
2x4x+1

(1)當x∈[-1,1]時,求f(x)的解析式;
(2)設g(x)=-2x•f(x)(-1<x<0),求函數y=g(x)的值域;
(3)若關于x的不等式λf(x)<1在x∈(0,1]上有解,求實數λ的取值范圍.

查看答案和解析>>

同步練習冊答案