如圖f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分圖象,則φ=
 
考點(diǎn):由y=Asin(ωx+φ)的部分圖象確定其解析式
專題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)圖象先求出A和周期T,再求出ω的值,把點(diǎn)(-
π
6
,0)代入f(x),由φ的范圍化和特殊角的正弦值求出φ的值.
解答: 解:由圖知A=3,
T
2
=
1
2
ω
=
6
-(-
π
6
)=π,∴ω=1;
又f(-
π
6
)=0,
∴-
π
6
+φ=2kπ,k∈Z.
∴φ=2kπ+
π
6
(k∈Z),又|φ|<
π
2

∴φ=
π
6

故答案為:
π
6
點(diǎn)評(píng):本題考查了正弦函數(shù)圖象和性質(zhì),以及復(fù)合三角函數(shù)的周期公式應(yīng)用,考查了讀圖能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)矩陣M=
1a
b1

(I)若a=2,b=3,求矩陣M的逆矩陣M-1
(Ⅱ)若曲線C:x2+4xy+2y2=1在矩陣M的作用下變換成曲線C′:x2-2y2=1,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex+ax-1(a∈R).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)F(x)=xlnx-f(x)在定義域內(nèi)存在零點(diǎn),求a的最大值.
(Ⅲ)若g(x)=ln(ex-1)-lnx,當(dāng)x∈(0,+∞)時(shí),不等式f(g(x))<f(x)恒成立,求a的取隨范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=a2=
1
2
,當(dāng)n≥2時(shí),an+1=an-
1
4
an-1
(Ⅰ)設(shè)bn=an+1-
1
2
an,證明數(shù)列{bn}是等比數(shù)列;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)設(shè)cn=
n-5
n
an,數(shù)列{cn}的前n項(xiàng)和為Sn.是否存在整數(shù)M,使得Sn≤M恒成立?若存在,求出M的最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面內(nèi)有k條直線將平面分成f(k)個(gè)區(qū)域,增加一條直線后,平面被分成的區(qū)域最多會(huì)增加
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,點(diǎn)B(4,0),則以O(shè)B為直徑的圓的極坐標(biāo)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三段論推理:“①正方形是平行四邊形,②平行四邊形對(duì)邊相等,③正方形對(duì)邊相等,其中小前提是
 
(寫(xiě)序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(cos80°,sin80°),B(cos20°,sin20°),則|
AB
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若拋物線y2=2px(p>0)的準(zhǔn)線經(jīng)過(guò)雙曲線x2-y2=1的左頂點(diǎn),則p=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案