(16)
解析:以9個(gè)分點(diǎn)為頂點(diǎn)組成的三角形分成兩類(lèi),其中三角形的2個(gè)頂點(diǎn)在原三角形的一條邊上,另一個(gè)頂點(diǎn)在原三角形的另一條邊上的三角形個(gè)數(shù)為CC(C+C),正三角形的三個(gè)頂點(diǎn)分別在原三角形的三條邊上的三角形的個(gè)數(shù)為CCC.
∴題目所求的概率為=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2010年揚(yáng)州中學(xué)高一下學(xué)期期末考試數(shù)學(xué) 題型:解答題
(本小題滿(mǎn)分16分) 一個(gè)三角形數(shù)表按如下方式構(gòu)成:第一行依次寫(xiě)上n(n≥4)個(gè)數(shù),在上一行的每相鄰兩數(shù)的中間正下方寫(xiě)上這兩數(shù)之和,得到下一行,依此類(lèi)推.記數(shù)表中第i行的第j個(gè)數(shù)為f(i,j).
(1)若數(shù)表中第i (1≤i≤n-3)行的數(shù)依次成等差數(shù)列,求證:第i+1行的數(shù)也依次成等差數(shù)列;
(2)已知f(1,j)=4j,求f(i,1)關(guān)于i的表達(dá)式;
(3)在(2)的條件下,若f(i,1)=(i+1)(ai-1),bi= ,試求一個(gè)函數(shù)g(x),使得
Sn=b1g(1)+b2g(2)+…+bng(n)<,且對(duì)于任意的m∈(,),均存在實(shí)數(shù),使得當(dāng)時(shí),都有Sn >m.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年揚(yáng)州中學(xué)高一下學(xué)期期末考試數(shù)學(xué) 題型:解答題
(本小題滿(mǎn)分16分) 一個(gè)三角形數(shù)表按如下方式構(gòu)成:第一行依次寫(xiě)上n(n≥4)個(gè)數(shù),在上一行的每相鄰兩數(shù)的中間正下方寫(xiě)上這兩數(shù)之和,得到下一行,依此類(lèi)推.記數(shù)表中第i行的第j個(gè)數(shù)為f(i,j).
(1)若數(shù)表中第i (1≤i≤n-3)行的數(shù)依次成等差數(shù)列,求證:第i+1行的數(shù)也依次成等差數(shù)列;
(2)已知f(1,j)=4j,求f(i,1)關(guān)于i的表達(dá)式;
(3)在(2)的條件下,若f(i,1)=(i+1)(ai-1),bi= ,試求一個(gè)函數(shù)g(x),使得
Sn=b1g(1)+b2g(2)+…+bng(n)<,且對(duì)于任意的m∈(,),均存在實(shí)數(shù),使得當(dāng)時(shí),都有Sn >m.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿(mǎn)分16分) 一個(gè)三角形數(shù)表按如下方式構(gòu)成:第一行依次寫(xiě)上n(n≥4)個(gè)數(shù),在上一行的每相鄰兩數(shù)的中間正下方寫(xiě)上這兩數(shù)之和,得到下一行,依此類(lèi)推.記數(shù)表中第i行的第j個(gè)數(shù)為f(i,j).
(1)若數(shù)表中第i (1≤i≤n-3)行的數(shù)依次成等差數(shù)列,求證:第i+1行的數(shù)也依次成等差數(shù)列;
(2)已知f(1,j)=4j,求f(i,1)關(guān)于i的表達(dá)式;
(3)在(2)的條件下,若f(i,1)=(i+1)(ai-1),bi= ,試求一個(gè)函數(shù)g(x),使得
Sn=b1g(1)+b2g(2)+…+bng(n)<,且對(duì)于任意的m∈(,),均存在實(shí)數(shù),使得當(dāng)n>時(shí),都有Sn >m.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿(mǎn)分16分) 一個(gè)三角形數(shù)表按如下方式構(gòu)成:第一行依次寫(xiě)上n(n≥4)個(gè)數(shù),在上一行的每相鄰兩數(shù)的中間正下方寫(xiě)上這兩數(shù)之和,得到下一行,依此類(lèi)推.記數(shù)表中第i行的第j個(gè)數(shù)為f(i,j).
(1)若數(shù)表中第i (1≤i≤n-3)行的數(shù)依次成等差數(shù)列,求證:第i+1行的數(shù)也依次成等差數(shù)列;
(2)已知f(1,j)=4j,求f(i,1)關(guān)于i的表達(dá)式;
(3)在(2)的條件下,若f(i,1)=(i+1)(ai-1),bi= ,試求一個(gè)函數(shù)g(x),使得
Sn=b1g(1)+b2g(2)+…+bng(n)<,且對(duì)于任意的m∈(,),均存在實(shí)數(shù),使得當(dāng)n>時(shí),都有Sn >m.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com