已知數(shù)列{an}的前n項(xiàng)和Sn=n2+
3n
4
,求{an}通項(xiàng)公式.
考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:由Sn=n2+
3n
4
,當(dāng)n=1時(shí),a1=S1.當(dāng)n≥2時(shí),an=Sn-Sn-1,即可得出.
解答: 解:由Sn=n2+
3n
4
,
當(dāng)n=1時(shí),a1=S1=1+
3
4
=
7
4

當(dāng)n≥2時(shí),an=Sn-Sn-1=n2+
3n
4
-[(n-1)2+
3(n-1)
4
]
=2n-
1
4

當(dāng)n=1時(shí),上式也成立.
an=2n-
1
4
(n∈N*).
點(diǎn)評(píng):本題考查了遞推式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD四邊形ABCD為正方形,AB=4,PA=3,A點(diǎn)在PD上的射影為G點(diǎn).
(1)求證:AG⊥平面PDC;
(2)在棱AB上是否存在一點(diǎn)E,使得AG∥平面PEC.若存在,求出AE的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

利用三角函數(shù)線,寫出滿足下列條件的角α的集合:
(1)sinα≥
2
2
;
(2)cosα≤
1
2
;
(2)|cosα|>|sinα|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由空間向量基本定理可知,空間任意向量
p
可由三個(gè)不共面的向量
a
,
b
,
c
唯一確定地表示為
p
=x
a
+y
b
+z
c
,則稱(x,y,z)為基底<
a
,
b
,
c
>下的廣義坐標(biāo).已知三棱錐S-ABC中,P為△ABC的重心,則在基底<
SA
SB
SC
>下的廣義坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a
=(-2,1,4),
b
=(3,2,-1)分別是直線l1,l2的方向向量,則(  )
A、l1∥l2
B、l1⊥l2
C、l1與l2相交
D、l1與l2相交或異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知質(zhì)點(diǎn)M按規(guī)律s=3t2+2做直線運(yùn)動(dòng)(位移單位:cm,時(shí)間單位:s).
(1)當(dāng)t=2,△t=0.01時(shí),求
△s
△t

(2)求質(zhì)點(diǎn)M在t=2時(shí)的瞬時(shí)速度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,正方體ABCD-A1B1C1D1中,M、N分別為AB、B1C的中點(diǎn),試用向量法判斷MN與平面A1BD的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

兩圓x2+y2=1和(x-3)2+y2=4的外公切線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線x+
3
y-2=0與圓x2+y2=4相交于A,B兩點(diǎn),則弦AB的長(zhǎng)度等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案