【題目】若異面直線所成的角是,則以下三個命題:

①存在直線,滿足的夾角都是

②存在平面,滿足,所成角為;

③存在平面,滿足,所成銳二面角為.

其中正確命題的個數(shù)為( )

A. 0 B. 1 C. 2 D. 3

【答案】D

【解析】分析中,在上任取一點, 的夾角均為;中,在上取一點,;中,在上取一點,,確定一個平面平面即可.

詳解異面直線所成的角是,在中,由異面直線所成的角是,

上任取一點,,在空間中過點能作出直線,使得的夾角均為,存在直線,滿足的夾角都是,正確;

中,在上取一點,,則以確定的平面滿足

所成的角是,正確中,在上取一點,,確定一個平面平面,過能作出一個平面,滿足所成銳二面角為,故正確,故選D

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】麻團又叫煎堆,呈球形,華北地區(qū)稱麻團,是一種古老的中華傳統(tǒng)特色油炸面食,寓意團圓。制作時以糯米粉團炸起,加上芝麻而制成,有些包麻茸、豆沙等餡料,有些沒有。一個長方體形狀的紙盒中恰好放入4個球形的麻團,它們彼此相切,同時與長方體紙盒上下底和側(cè)面均相切,其俯視圖如圖所示,若長方體紙盒的表面積為576 ,則一個麻團的體積為_______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐PABCD中,AD⊥平面PAB,APAB

(1)求證:CDAP;

(2)若CDPD,求證:CD∥平面PAB;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)處的切線與直線平行,求實數(shù)的值;

(2)試討論函數(shù)在區(qū)間上最大值;

(3)若時,函數(shù)恰有兩個零點,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個正方體的平面展開圖及該正方體的直觀圖的示意圖如圖所示.

)請按字母FG,H標記在正方體相應地頂點處(不需要說明理由)

)判斷平面BEG與平面ACH的位置關系.并說明你的結(jié)論.

)證明:直線DF平面BEG

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

已知公比為整數(shù)的正項等比數(shù)列滿足:

1)求數(shù)列的通項公式;

2)令,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四種說法正確的是( )

①若都是定義在上的函數(shù),則“同是奇函數(shù)”是“是偶函數(shù)”的充要條件

②命題”的否定是“ ≤0”

③命題“若x=2,則”的逆命題是“若,則x=2”

④命題:在中,若,則

命題在第一象限是增函數(shù);

為真命題

A. ①②③④ B. ①③ C. ③④ D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】養(yǎng)路處建造圓錐形無底倉庫用于貯藏食鹽(供融化高速公路上的積雪之用),已建的倉庫的底面直徑為12m,高4m,養(yǎng)路處擬建一個更大的圓錐形倉庫,以存放更多食鹽,現(xiàn)有兩種方案:一是新建的倉庫的底面直徑比原來大4m(高不變);二是高度增加4m(底面直徑不變).

(1)分別計算按這兩種方案所建的倉庫的體積;

(2)分別計算按這兩種方案所建的倉庫的表面積;

(3)哪個方案更經(jīng)濟些?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點A(0,-2),橢圓E (a>b>0)的離心率為,F是橢圓E的右焦點,直線AF的斜率為,O為坐標原點.

(1)E的方程;

(2)設過點A的動直線lE相交于P,Q兩點.OPQ的面積最大時,求l的方程.

查看答案和解析>>

同步練習冊答案