【題目】有六名同學(xué)參加演講比賽,編號(hào)分別為12,3,4,56,比賽結(jié)果設(shè)特等獎(jiǎng)一名,,,,四名同學(xué)對(duì)于誰(shuí)獲得特等獎(jiǎng)進(jìn)行預(yù)測(cè).說(shuō):不是1號(hào)就是2號(hào)獲得特等獎(jiǎng);說(shuō):3號(hào)不可能獲得特等獎(jiǎng);說(shuō):4,5,6號(hào)不可能獲得特等獎(jiǎng);說(shuō):能獲得特等獎(jiǎng)的是4,5,6號(hào)中的一個(gè).公布的比賽結(jié)果表明,,,,中只有一個(gè)判斷正確.根據(jù)以上信息,獲得特等獎(jiǎng)的是( )號(hào)同學(xué).

A.1B.2C.3D.4,5,6號(hào)中的一個(gè)

【答案】C

【解析】

因?yàn)橹挥幸蝗瞬聦?duì),而互相否定,故,中一人猜對(duì),再分類討論,綜合分析即可得出結(jié)論.

解:因?yàn)?/span>,互相否定,故,中一人猜對(duì),

假設(shè)對(duì),則也對(duì)與題干矛盾,故錯(cuò),猜對(duì)者一定是,于是一定猜錯(cuò),也錯(cuò),

則獲得特等獎(jiǎng)的是:3號(hào)同學(xué).

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠為提高生產(chǎn)效率,開(kāi)展技術(shù)創(chuàng)新活動(dòng),提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時(shí)間(單位:min)繪制了如下莖葉圖:

(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說(shuō)明理由;

(2)求40名工人完成生產(chǎn)任務(wù)所需時(shí)間的中位數(shù),并將完成生產(chǎn)任務(wù)所需時(shí)間超過(guò)和不超過(guò)的工人數(shù)填入下面的列聯(lián)表:

超過(guò)

不超過(guò)

第一種生產(chǎn)方式

第二種生產(chǎn)方式

(3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認(rèn)為兩種生產(chǎn)方式的效率有差異?

附:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】7張卡片分別寫(xiě)有數(shù)字從中任取4張,可排出不同的四位數(shù)的個(gè)數(shù)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn),且離心率為.

1)求橢圓的方程;

2)已知圓方程為,過(guò)圓上任意一點(diǎn)作圓的切線,切線與橢圓交于兩點(diǎn),為坐標(biāo)原點(diǎn),設(shè)的中點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線是由兩個(gè)定點(diǎn)和點(diǎn)的距離之積等于的所有點(diǎn)組成的,對(duì)于曲線,有下列四個(gè)結(jié)論:①曲線是軸對(duì)稱圖形;②曲線上所有的點(diǎn)都在單位圓內(nèi);③曲線是中心對(duì)稱圖形;④曲線上所有點(diǎn)的縱坐標(biāo).其中,所有正確結(jié)論的序號(hào)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

如圖,已知是以的直角三角形鐵皮,米,分別是邊上不與端點(diǎn)重合的動(dòng)點(diǎn),且.現(xiàn)將鐵皮沿折起至的位置,使得平面平面,連接,如圖所示.現(xiàn)要制作一個(gè)四棱錐的封閉容器,其中鐵皮和直角梯形鐵皮分別是這個(gè)封閉容器的一個(gè)側(cè)面和底面,其他三個(gè)側(cè)面用相同材料的鐵皮無(wú)縫焊接密封而成(假設(shè)制作過(guò)程中不浪費(fèi)材料,且鐵皮厚度忽略不計(jì)).

1)若邊的中點(diǎn),求制作三個(gè)新增側(cè)面的鐵皮面積是多少平方米?

2)求這個(gè)封閉容器的最大體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求在區(qū)間上的最大值;

2)若過(guò)點(diǎn)存在3條直線與曲線相切,求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)fx),gx)分別是定義在R上的奇函數(shù)和偶函數(shù),fx),g'x)為其導(dǎo)函數(shù),當(dāng)x0時(shí),fxgx+fxg'x)<0g(﹣3)=0,則使得不等式fxgx)<0成立的x的取值范圍是(

A.(﹣,﹣3B.(﹣3,0C.0,3D.3,+∞

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,是邊長(zhǎng),的矩形硬紙片,在硬紙片的四角切去邊長(zhǎng)相等的小正方形后,再沿虛線折起,做成一個(gè)無(wú)蓋的長(zhǎng)方體盒子,、上被切去的小正方形的兩個(gè)頂點(diǎn),設(shè).

1)將長(zhǎng)方體盒子體積表示成的函數(shù)關(guān)系式,并求其定義域;

2)當(dāng)為何值時(shí),此長(zhǎng)方體盒子體積最大?并求出最大體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案