設(shè)是公差大于零的等差數(shù)列,已知.

(Ⅰ)求的通項(xiàng)公式;

(Ⅱ)設(shè)是以函數(shù)的最小正周期為首項(xiàng),以為公比的等比數(shù)列,求數(shù)列的前項(xiàng)和.

 

【答案】

(Ⅰ);(Ⅱ)

【解析】

試題分析:(Ⅰ)由題設(shè)可得一方程組: ,解這個(gè)方程組即得首項(xiàng)和公差,從而得通項(xiàng)公式;(Ⅱ),則此知最小正周期為,故首項(xiàng)為1;因?yàn)楣葹?,從而 .所以,這是一個(gè)由等差數(shù)列與等比數(shù)列的差得到的數(shù)列,故采用分組求和的方法求和.

試題解析:(Ⅰ)設(shè)的公差為,則 解得(舍)……5分

所以             6分

(Ⅱ)

其最小正周期為,故首項(xiàng)為1;          7分

因?yàn)楣葹?,從而              8分

所以,故

          12分

考點(diǎn):1、等差數(shù)列與等比數(shù)列;2、分組求和;3、三角函數(shù)的周期.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是公差大于零的等差數(shù)列,已知a1=2,a3=a22-10.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè){bn}是以函數(shù)y=4sin2(πx+
1
2
)-1的最小正周期為首項(xiàng),以3為公比的等比數(shù)列,求數(shù)列{an-bn}的前n項(xiàng)和Sn;
(Ⅲ)若f(n)=
2
2n+a1
+
2
2n+a2
+…+
2
2n+an
(n∈N,且n≥2,求函數(shù)f(n)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年四川成都石室中學(xué)高三模擬考試一文科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)是公差大于零的等差數(shù)列,已知,.

(Ⅰ)求的通項(xiàng)公式;

(Ⅱ)設(shè)是以函數(shù)的最小正周期為首項(xiàng),以為公比的等比數(shù)列,求數(shù)列的前項(xiàng)和.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)是公差大于零的等差數(shù)列,已知,.

(1)求的通項(xiàng)公式;

(2)設(shè)是以函數(shù)的最小正周期為首項(xiàng),以為公比的等比數(shù)列,求數(shù)列的前項(xiàng)和;

(3)若的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)是公差大于零的等差數(shù)列,已知,.

(Ⅰ)求的通項(xiàng)公式;

(Ⅱ)設(shè)是以函數(shù)的最小正周期為首項(xiàng),以為公比的等比數(shù)列,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案