三棱柱ABC-A1B1C1的底面是正三角形,側(cè)棱垂直于底面,所有棱長都是6,則四面體A1ABC,B1ABC,C1ABC的公共部分的體積等于( )
A.
B.
C.
D.
【答案】分析:可得四面體A1ABC,B1ABC,C1ABC的公共部分為四面體GABC,由已知數(shù)據(jù)結(jié)合三棱錐的體積公式可得答案.
解答:解:由題意三棱柱ABC-A1B1C1為正三棱柱,如圖:
連接AB1與A1B交于M,AC1與A1C交于N,連接CM,BN交與G,
由已知數(shù)據(jù)可得A1M=MB=A1N=NC=3,GB=GC=CM==4,
所以G到平面ABC的距離h==2
四面體A1ABC,B1ABC的公共部分為四面體NABC,
四面體B1ABC,C1ABC的公共部分為四面體MABC
可知四面體A1ABC,B1ABC,C1ABC的公共部分為四面體GABC,
可得其體積為:V=SABC×h=9×2=6
故選D
點(diǎn)評:本題考查三棱錐(四面體)的體積,得出公共部分為四面體GABC是解決問題的關(guān)鍵,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在三棱柱ABC-A1B1C1中,側(cè)面AA1B1B是邊長為2的正方形,點(diǎn)C在平面AA1B1B上的射影H恰好為A1B的中點(diǎn),且CH=
3
,設(shè)D為CC1中點(diǎn),
(Ⅰ)求證:CC1⊥平面A1B1D;
(Ⅱ)求DH與平面AA1C1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)
如圖(1)是一個水平放置的正三棱柱ABC-A1B1C1,D是棱BC的中點(diǎn).正三棱柱的主視圖如圖(2).
(Ⅰ) 圖(1)中垂直于平面BCC1B1的平面有哪幾個?(直接寫出符合要求的平面即可,不必說明或證明)
(Ⅱ)求正三棱柱ABC-A1B1C1的體積;
(Ⅲ)證明:A1B∥平面ADC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=
6
,M是棱CC1的中點(diǎn),
(1)求證:A1B⊥AM;
(2)求直線AM與平面AA1B1B所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:在直三棱柱ABC-A1B1C1中,已知AB=A1A,AC=BC,點(diǎn)D、E分別為C1C、AB的中點(diǎn),O為A1B與AB1的交點(diǎn).
(Ⅰ)求證:EC∥平面A1BD;
(Ⅱ)求證:AB1⊥平面A1BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖北省部分重點(diǎn)中學(xué)2010屆高三第一次聯(lián)考 題型:解答題

 

        如圖所示,在正三棱柱ABC—A11C1中,BB1=BC=2,且M是BC的中點(diǎn),點(diǎn)N在CC1上。

 
   (1)試確定點(diǎn)N的位置,使AB1⊥MN;

   (2)當(dāng)AB1⊥MN時,求二面角M—AB1—N的大小。

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案