在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=A,AB=2,以AC的中點O為球心、AC為直徑的球面交PD于點M。

(1)求證:平面ABM⊥平面PCD;

(2)求直線CD與平面ACM所成的角的大小;

 

 

【答案】

(1)依題設(shè)知,AC是所作球面的直徑,則AM⊥MC。

又因為PA⊥平面ABCD,則PA⊥CD,又CD⊥AD,

所以CD⊥平面PAD,則CD⊥AM,所以AM⊥平面PCD,

所以平面ABM⊥平面PCD。

(2)如圖所示,建立空間直角坐標系,則A(0,0,0),P(0,0,4),

B(2,0,0),C(2,4,0),D(0,4,0),M(0,2,2);

設(shè)平面ACM的一個法向量

所以所求角的大小為arcsin。

 

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知在四棱錐P一ABCD中,底面ABCD是矩形,PA⊥平面ABCD,
PA=AD=1,AB=2,E、F分別是AB、PD的中點.
(Ⅰ)求證:AF∥平面PEC;
(Ⅱ)求PC與平面ABCD所成角的正切值;
(Ⅲ)求二面角P-EC-D的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖.在四棱錐P一ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底    面ABCD,PD=DC=2,E是PC的中點.
(1)證明:PA∥平面EDB;
(2)證明:平面PAC⊥平面PDB;
(3)求三梭錐D一ECB的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在四棱錐P一ABCD中,二面角P一AD一B為60°,∠PDA=45°,∠DAB=90°,∠PAD=90°,∠ADC=135°,
(Ⅰ)求證:平面PAB⊥平面ABCD;
(Ⅱ)求PD與平面ABCD所成角的正弦值;
(Ⅲ)求二面角P一CD一B的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P一ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點.PA=PD=AD=2,點M在線段PC上 PM=
13
PC
(1)證明:PA∥平面MQB;
(2)若平面PAD⊥平面ABCD,求二面角M-BQ-C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)在四棱錐PABCD中,底面ABCD是正方形,側(cè)棱PD與底面ABCD垂直,PD=DCEPC的中點,作EF于點F(Ⅰ)證明PA平面EBD

(Ⅱ)證明PB平面EFD

(Ⅲ)求二面角的余弦值;

查看答案和解析>>

同步練習冊答案