推理:因?yàn)槠叫兴倪呅螌吰叫星蚁嗟,而矩形是特殊的平行四邊形,所以矩形的對邊平行且相等.以上推理的方法是?nbsp; )
A.合情推理 | B.演繹推理 | C.歸納推理 | D.類比推理 |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
把正整數(shù)按一定的規(guī)則排成了如圖所示的三角形數(shù)表.設(shè)是位于這個(gè)三角形數(shù)表中從上往下數(shù)第行,從左往右數(shù)第個(gè)數(shù),若,則與的和為( )
A.105 | B.103 | C.82 | D.81 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
用數(shù)學(xué)歸納法證明“時(shí),從“到”時(shí),左邊應(yīng)增添的式子是( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
對于任意正整數(shù)n,定義“”如下:
當(dāng)n是偶數(shù)時(shí),,
當(dāng)n是奇數(shù)時(shí),
現(xiàn)在有如下四個(gè)命題:
①;
②;
③的個(gè)位數(shù)是0;
④的個(gè)位數(shù)是5。
其中正確的命題有( )
A.1個(gè) | B.2個(gè) | C.3個(gè) | D.4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
凡自然數(shù)都是整數(shù),而 4是自然數(shù) 所以,4是整數(shù)。以上三段論推理( )
A.正確 | B.推理形式不正確 |
C.兩個(gè)“自然數(shù)”概念不一致 | D.兩個(gè)“整數(shù)”概念不一致 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
用反證法證明命題:“若整系數(shù)一元二次方程有有理根,那么中至少有一個(gè)是偶數(shù)時(shí),下列假設(shè)中正確的是
A.假設(shè)都是偶數(shù) |
B.假設(shè)都不是偶數(shù) |
C.假設(shè)至多有一個(gè)是偶數(shù) |
D.假設(shè)至多有兩個(gè)是偶數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
若a,b∈R,則下面四個(gè)式子中恒成立的是( )
A.lg(1+a2)>0 | B.a(chǎn)2+b2≥2(a-b-1) |
C.a(chǎn)2+3ab>2b2 | D.< |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
分析法是從要證明的結(jié)論出發(fā),逐步尋求使結(jié)論成立的( 。
A.充分條件 | B.必要條件 | C.充要條件 | D.等價(jià)條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com