【題目】2016年1月1日起全國統(tǒng)一實(shí)施全面的兩孩政策.為了解適齡民眾對放開生育二胎政策的態(tài)度,某市選取70后80后作為調(diào)查對象,隨機(jī)調(diào)查了100人并對調(diào)查結(jié)果進(jìn)行統(tǒng)計,70后不打算生二胎的占全部調(diào)查人數(shù)的15%,80后打算生二胎的占全部被調(diào)查人數(shù)的45%,100人中共有75人打算生二胎.
(1)根據(jù)調(diào)查數(shù)據(jù),判斷是否有90%以上把握認(rèn)為“生二胎與年齡有關(guān)”,并說明理由;
(2)以這100人的樣本數(shù)據(jù)估計該市的總體數(shù)據(jù),且以頻率估計概率,若從該市70后公民中(人數(shù)很多)隨機(jī)抽取3位,記其中打算生二胎的人數(shù)為X,求隨機(jī)變量X的分布列,數(shù)學(xué)期望E(X)和方差D(X). 參考公式:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中n=a+b+c+d)

【答案】
(1)解:由題意得年齡與生二胎的列聯(lián)表為:

生二胎

不生二胎

合計

70后

30

15

45

80后

45

10

55

合計

75

25

100

所以

所以有90%以上把握認(rèn)為“生二胎與年齡有關(guān)”


(2)解:由已知得該市70后“生二胎”的概率為 ,且X~B(3,

所以

故X的分布列為:

X

0

1

2

3

P

所以E(X)=3× =2,方差D(X)=3× × =


【解析】(1)根據(jù)列聯(lián)表中的數(shù)據(jù),計算K2的值,即可得到結(jié)論;(2)X可能取值為0,1,2,3,X~B(3, ),求出相應(yīng)的概率,可得X的分布列及數(shù)學(xué)期望.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在我國古代著名的數(shù)學(xué)專著《九章算術(shù)》里有一段敘述:今有良馬與駑馬發(fā)長安至齊,齊去長安一千一百二十五里,良馬初日行一百零三里,日增十三里;駑馬初日行九十七里,日減半里;良馬先至齊,復(fù)還迎駑馬,二馬相逢.問:幾日相逢?(
A.9日
B.8日
C.16日
D.12日

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等腰△ABC中,AC=BC= ,AB=2,E、F分別為AC、BC的中點(diǎn),將△EFC沿EF折起,使得C到P,得到四棱錐P﹣ABFE,且AP=BP=

(1)求證:平面EFP⊥平面ABFE;
(2)求二面角B﹣AP﹣E的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=f(x)導(dǎo)函數(shù)的圖象如圖所示,則下列說法錯誤的是( )

A.(﹣1,3)為函數(shù)y=f(x)的遞增區(qū)間
B.(3,5)為函數(shù)y=f(x)的遞減區(qū)間
C.函數(shù)y=f(x)在x=0處取得極大值
D.函數(shù)y=f(x)在x=5處取得極小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某中學(xué)舉行的環(huán)保知識競賽中,將三個年級參賽的學(xué)生的成績進(jìn)行整理后分為5組,繪制出如圖所示的頻率分布直方圖,圖中從左到右依次為第一、第二、第三、第四、第五小組,已知第二小組的頻數(shù)是40,則成績在80~100分的學(xué)生人數(shù)是( )

A.15
B.18
C.20
D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知U=R,M={x|﹣l≤x≤2},N={x|x≤3},則(UM)∩N=(
A.{x|2≤x≤3}
B.{x|2<x≤3}
C.{x|x≤﹣1,或2≤x≤3}
D.{x|x<﹣1,或2<x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是等比數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,且a3=3,S3=9
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2 ,且{bn}為遞增數(shù)列,若cn= ,求證:c1+c2+c3+…+cn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x|+|x+1|.
(1)若x∈R,恒有f(x)≥λ成立,求實(shí)數(shù)λ的取值范圍;
(2)若m∈R,使得m2+2m+f(t)=0成立,試求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù))在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位.且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=6sinθ.
(1)求圓C的直角坐標(biāo)方程;
(2)設(shè)圓C與直線l交于點(diǎn)A,B.若點(diǎn)P的坐標(biāo)為(1,2),求|PA|+|PB|的最小值.

查看答案和解析>>

同步練習(xí)冊答案