(本小題共13分)

       若數(shù)列滿足,數(shù)列數(shù)列,記=

       (Ⅰ)寫出一個(gè)滿足,且〉0的數(shù)列;

       (Ⅱ)若,n=2000,證明:E數(shù)列是遞增數(shù)列的充要條件是=2011;

       (Ⅲ)對(duì)任意給定的整數(shù)n(n≥2),是否存在首項(xiàng)為0的E數(shù)列,使得=0?如果存在,寫出一個(gè)滿足條件的E數(shù)列;如果不存在,說(shuō)明理由。

(共13分)

解:(Ⅰ)0,1,2,1,0是一具滿足條件的E數(shù)列A5

(答案不唯一,0,1,0,1,0也是一個(gè)滿足條件的E的數(shù)列A5

(Ⅱ)必要性:因?yàn)镋數(shù)列A5是遞增數(shù)列,

所以.

所以A5是首項(xiàng)為12,公差為1的等差數(shù)列.

所以a2000=12+(2000—1)×1=2011.

充分性,由于a2000—a1000≤1,

a2000—a1000≤1

……

a2—a1≤1

       所以a2000—a≤19999,即a2000≤a1+1999.

       又因?yàn)閍1=12,a2000=2011,

       所以a2000=a1+1999.

       故是遞增數(shù)列.

       綜上,結(jié)論得證。

       (Ⅲ)令

       因?yàn)?sub>

       ……

      

所以

因?yàn)?sub>

所以為偶數(shù),

所以要使為偶數(shù),

即4整除.

當(dāng)

時(shí),有

當(dāng)的項(xiàng)滿足,

當(dāng)不能被4整除,此時(shí)不存在E數(shù)列An

使得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題共13分)

已知函數(shù)

   (I)若x=1為的極值點(diǎn),求a的值;

   (II)若的圖象在點(diǎn)(1,)處的切線方程為,

(i)求在區(qū)間[-2,4]上的最大值;

(ii)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011屆北京市豐臺(tái)區(qū)高三年級(jí)第二學(xué)期統(tǒng)一練習(xí)理科數(shù)學(xué) 題型:解答題


(本小題共13分)
已知函數(shù)
(Ⅰ)若處取得極值,求a的值;
(Ⅱ)求函數(shù)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年北京市高三壓軸文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題共13分)

已知向量,設(shè)函數(shù).

(Ⅰ)求函數(shù)上的單調(diào)遞增區(qū)間;

(Ⅱ)在中,,,分別是角,的對(duì)邊,為銳角,若,的面積為,求邊的長(zhǎng).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京市豐臺(tái)區(qū)高三下學(xué)期統(tǒng)一練習(xí)數(shù)學(xué)理卷 題型:解答題

(本小題共13分)

某商場(chǎng)在店慶日進(jìn)行抽獎(jiǎng)促銷活動(dòng),當(dāng)日在該店消費(fèi)的顧客可參加抽獎(jiǎng).抽獎(jiǎng)箱中有大小完全相同的4個(gè)小球,分別標(biāo)有字“生”“意”“興”“隆”.顧客從中任意取出1個(gè)球,記下上面的字后放回箱中,再?gòu)闹腥稳?個(gè)球,重復(fù)以上操作,最多取4次,并規(guī)定若取出“隆”字球,則停止取球.獲獎(jiǎng)規(guī)則如下:依次取到標(biāo)有“生”“意”“興”“隆”字的球?yàn)橐坏泉?jiǎng);不分順序取到標(biāo)有“生”“意”“興”“隆”字的球,為二等獎(jiǎng);取到的4個(gè)球中有標(biāo)有“生”“意”“興”三個(gè)字的球?yàn)槿泉?jiǎng).

(Ⅰ)求分別獲得一、二、三等獎(jiǎng)的概率;

(Ⅱ)設(shè)摸球次數(shù)為,求的分布列和數(shù)學(xué)期望.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:北京市宣武區(qū)2010年高三第一次質(zhì)量檢測(cè)數(shù)學(xué)(文)試題 題型:解答題

(本小題共13分)
已知函數(shù)
(I)當(dāng)a=1時(shí),求函數(shù)的最小正周期及圖象的對(duì)稱軸方程式;
(II)當(dāng)a=2時(shí),在的條件下,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案