若函數(shù)y=f(x)的定義域是[0,2],求g(x)=f(x+
1
2
)-f(x-
1
2
)的定義域.
考點:函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用已知條件列出不等式組求解即可.
解答: 解:函數(shù)y=f(x)的定義域是[0,2],要使函數(shù)g(x)=f(x+
1
2
)-f(x-
1
2
)有意義,
0≤x+
1
2
≤2
0≤x-
1
2
≤2
,可得
-
1
2
≤x≤
3
2
1
2
≤x≤
5
2

1
2
≤x≤
3
2

∴g(x)=f(x+
1
2
)-f(x-
1
2
)的定義域:[
1
2
,
3
2
]
點評:本題考查函數(shù)的定義域的求法,正確理解函數(shù)的解析式的解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知在等差數(shù)列{an}中,a1+a3=10,a2+a6=14,則該數(shù)列的公差等于( 。
A、
1
2
B、1
C、2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線C的方程為
x2
4
-y2=1,直線l的方程是y-1=k(x-2).當(dāng)k為何值時,直線l與雙曲線C滿足下列條件:
(1)有兩個公共點;
(2)僅有一個公共點;
(3)沒有公共點?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)是定義在R上的增函數(shù)且f(x)≠0,對于任意x1,x2∈R都有f(x1+x2)=f(x1)•f(x2
(1)求證:f(x)>0;
(2)求證:f(x1-x2)=
f(x1)
f(x2)
;
(3)若f(1)=2,解不等式f(3x)>4f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知焦點在x軸上,中點在原點的雙曲線C,漸近線方程是2x±3y=0,焦距為2
13
,則雙曲線方程C是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列條件中,可得出直線a∥平面α的是( 。
A、a與α內(nèi)的兩條相交直線不相交
B、a與α內(nèi)的所有直線都不相交
C、a與α內(nèi)的無數(shù)條直線不相交
D、a與α內(nèi)的無數(shù)條直線平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x2-x的圖象與函數(shù)y=
 
的圖象關(guān)于y軸對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)是定義在R上的偶函數(shù),在[2,6]上是減函數(shù),則f(-5)
 
f(3)(填“<”、“>”或“=”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和Sn=3an-2(n=1,2,…).
(Ⅰ)證明數(shù)列{an}是等比數(shù)列;
(Ⅱ)若bn+1=an+bn(n=1,2,…),且b1=-3,求數(shù)列{bn}的通項公式.

查看答案和解析>>

同步練習(xí)冊答案