函數(shù)y=x2-4x+10在區(qū)間[1,4)上( 。
A、最小值是6,最大值是10
B、最小值是7,最大值是10
C、最小值是6,沒(méi)有最大值
D、最小值是7,沒(méi)有最大值
考點(diǎn):二次函數(shù)在閉區(qū)間上的最值
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:把二次函數(shù)的解析式配方,再利用二次函數(shù)的性質(zhì)可得結(jié)論.
解答: 解:函數(shù)y=x2-4x+10=(x-2)2+6,在區(qū)間[1,4)上,當(dāng)x=2時(shí),函數(shù)取得最小值為6,
當(dāng)x趨于4時(shí),函數(shù)值趨于10,
故選:C.
點(diǎn)評(píng):本題主要考查求二次函數(shù)在閉區(qū)間上的最值,二次函數(shù)的性質(zhì)的應(yīng)用,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax3+bx2-3x+a+2b-1是R上的奇函數(shù).
(1)求函數(shù)f(x)的解析式;
(2)求f′(2)+f′(-2)的值;
(3)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)a與直線(xiàn)b垂直,a∥面α,則b與面α的位置關(guān)系是(  )
A、b∥αB、b?α
C、b與α相交D、以上都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列1,4,9,16,25,…的一個(gè)通項(xiàng)公式an=( 。
A、n2-1
B、n2
C、2n2-1
D、2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義為R上的函數(shù)f(x)滿(mǎn)足f(x)f(x+2)=1,f(1)=3,f(2)=2,則f(2014)=( 。
A、3
B、
7
2
C、
7
3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

漸近線(xiàn)方程為x±
2
y=0的雙曲線(xiàn)過(guò)點(diǎn)(-2,
3
)
,則此雙曲線(xiàn)的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在(1+x)5+(1+x)6+(1+x)7的展開(kāi)式中,含x4項(xiàng)的系數(shù)是等差數(shù)列 an=3n-5的第
 
項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列敘述中正確的是( 。
A、兩個(gè)數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)
B、兩個(gè)不等正數(shù)的算術(shù)平均數(shù)大于它們的幾何平均數(shù)
C、若兩個(gè)數(shù)的和為常數(shù),則它們的積有最大值
D、若兩個(gè)數(shù)的積為常數(shù),則它們的和有最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)求函數(shù)y=log
1
2
(x2-3x+2)
的單調(diào)遞增區(qū)間;
(2)某種商品進(jìn)價(jià)為每件100元,按進(jìn)價(jià)增加25%出售,后因庫(kù)存積壓降價(jià),按九折出售,求每件還獲利多少元.

查看答案和解析>>

同步練習(xí)冊(cè)答案