如下圖,已知一點(diǎn)O到平行四邊形三個(gè)頂點(diǎn)A、B、C的向量分別為r1、r2r3,則等于(  ).

[  ]
A.

r1r2r3

B.

r1r3r2

C.

r2r3r1

D.

r1r3r2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:重慶市37中2005-2006年高二下第一次月考數(shù)學(xué)試題 題型:044

如下圖:已知P是正方形ABCD所在平面外一點(diǎn),點(diǎn)P在平面ABCD內(nèi)的射影O是正方形的中心,PO=OD=a,E是PD的中點(diǎn)

(1)求證:PD⊥平面AEC

(2)求直線BP到平面AEC的距離

(3)求直線BC與平面AEC所成的角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年高考預(yù)測(cè)卷數(shù)學(xué)科(一)新課標(biāo) 題型:044

有一幅橢圓型彗星軌道圖,長(zhǎng)4 cm,高,如下圖,已知O為橢圓中心,A1,A2是長(zhǎng)軸兩端點(diǎn),太陽位于橢圓的左焦點(diǎn)F處.

(Ⅰ)建立適當(dāng)?shù)淖鴺?biāo)系,寫出橢圓方程,并求出當(dāng)彗星運(yùn)行到太陽正上方時(shí)二者在圖上的距離;

(Ⅱ)直線l垂直于A1A2的延長(zhǎng)線于D點(diǎn),|OD|=4,設(shè)P是l上異于D點(diǎn)的任意一點(diǎn),直線A1P,A2P分別交橢圓于M、N(不同于A1,A2)兩點(diǎn),問點(diǎn)A2能否在以MN為直徑的圓上?試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

有一幅橢圓型彗星軌道圖,長(zhǎng)4cm,高,如下圖,

已知O為橢圓中心,A1,A2是長(zhǎng)軸兩端點(diǎn),

 
太陽位于橢圓的左焦點(diǎn)F處.

   (Ⅰ)建立適當(dāng)?shù)淖鴺?biāo)系,寫出橢圓方程,

并求出當(dāng)彗星運(yùn)行到太陽正上方時(shí)二者在圖上的距離;

   (Ⅱ)直線l垂直于A1A2的延長(zhǎng)線于D點(diǎn),|OD|=4,

設(shè)P是l上異于D點(diǎn)的任意一點(diǎn),直線A1P,A2P分別

交橢圓于M、N(不同于A1,A2)兩點(diǎn),問點(diǎn)A2能否

在以MN為直徑的圓上?試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆廣東肇慶高二上學(xué)期期末質(zhì)量檢測(cè)理科數(shù)學(xué)卷(解析版) 題型:填空題

如下圖,從圓O外一點(diǎn)A引圓的切線AD和割線ABC,已知,,圓O的半徑為3,則圓心O到AC的距離為    .

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案