在Rt△ABC中,CA⊥CB,斜邊AB上的高為h1

;類比此性質(zhì),如圖,在四

面體P—ABC中,若PA,PB,PC兩兩垂直,底

面ABC上的高為h,則得到的正確結(jié)論為                                  

 
 

解析:.本題考查了合情推理的能力.

連接CO且延長(zhǎng)交AB于點(diǎn)D,連PD,

由已知PC⊥PD,在直角三角形PDC中,DC·h=PD·PC,

容易知道 AB⊥平面PDC,所以AB⊥PD,

在直角三角形APB中,AB·PD=PA·PB,所以,

,故。

(也可以由等體積法得到)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C是直角,AC=3,BC=4,CD⊥AB于點(diǎn)D,∠A的平分線交CD于點(diǎn)M,交BC于點(diǎn)E,求:
(1)CD的長(zhǎng);
(2)AE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在Rt△ABC中,∠C=90°,∠A=60°,從頂點(diǎn)C出發(fā),在∠ACB內(nèi)等可能地引射線CD交線段AB于點(diǎn)D,則S△ACD
1
2
S△ABC
的概率是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在Rt△ABC中,∠C=90°,BC=3,AC=6.D、E分別是AC、AB上的點(diǎn),且DE∥BC,將△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如圖2.
(1)求證:BC∥平面A1DE;
(2)求證:BC⊥平面A1DC;
(3)當(dāng)D點(diǎn)在何處時(shí),A1B的長(zhǎng)度最小,并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在Rt△ABC中,∠C=90°,AC=BC=2,D是△ABC內(nèi)切圓圓心,設(shè)P是⊙D外的三角形ABC區(qū)域內(nèi)的動(dòng)點(diǎn),若
CP
CA
CB
,則點(diǎn)(λ,μ)所在區(qū)域的面積為
1
2
-(
3
2
-
2
)π
1
2
-(
3
2
-
2
)π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-1:幾何證明選講
如圖,在Rt△ABC中,C=90°,BE平分∠ABC交AC于點(diǎn)E,點(diǎn)D在AB上,DE⊥EB.
(1)求證:AC是△BDE的外接圓的切線;
(2)若AD=2
6
,AE=6
2
,求EC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案