【題目】下列有關(guān)命題說法正確的是( )
A.命題p:“?x∈R,sinx+cosx= ”,則?p是真命題
B.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分條件
C.命題“?x∈R,使得x2+x+1<0“的否定是:“?x∈R,x2+x+1<0”
D.“a>l”是“y=logax(a>0且a≠1)在(0,+∞)上為增函數(shù)”的充要條件
【答案】D
【解析】解:A、由于sinx+cosx= sin(x+ ),當(dāng)x= 時(shí),sinx+cosx= , 則命題p:“x∈R,sinx+cosx= ”為真命題,則¬p是假命題;
B、由于x2﹣5x﹣6=0的解為:x=﹣1或x=6,故“x=﹣1”是“x2﹣5x﹣6=0”的充分不必要條件;
C、由于命題“x∈R,使得x2+x+1<0”則命題的否定是:“x∈R,x2+x+1≥0”;
D、若y=logax(a>0且a≠1)在(0,+∞)上為增函數(shù),則必有a>l,反之也成立
故“a>l”是“y=logax(a>0且a≠1)在(0,+∞)上為增函數(shù)”的充要條件
所以答案是D.
【考點(diǎn)精析】利用命題的真假判斷與應(yīng)用對題目進(jìn)行判斷即可得到答案,需要熟知兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在空間直角坐標(biāo)系中有直三棱柱ABC﹣A1B1C1 , CA=2CB,CC1=3CB,則直線BC1與直線AB1夾角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若存在過點(diǎn)(1,0)的直線與曲線y=x3和 都相切,則a等于( )
A.﹣1或
B.﹣1或
C. 或
D. 或7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={y|y=log x, },B={x|y= }.
(1)若a=2,求A∩B;
(2)若A∪B=B,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,CD=1,∠BCD=60°,BD⊥CD,正方形ADEF,且面ADEF⊥面ABCD.
(Ⅰ)求證:BD⊥平面ECD.
(Ⅱ)求D點(diǎn)到面CEB的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}滿足a3=7,a5+a7=26,數(shù)列{an}的前n項(xiàng)和Sn . (Ⅰ)求an及Sn;
(Ⅱ)令bn= (n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列說法: ①函數(shù)y=﹣cos2x的最小正周期是π;
②終邊在y軸上的角的集合是{α|α= ,k∈Z};
③在同一直角坐標(biāo)系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個(gè)公共點(diǎn);
④函數(shù)f(x)=4sin(2x+ )(x∈R)可以改寫為y=4cos(2x﹣ );
⑤函數(shù)y=sin(x﹣ )在[0,π]上是減函數(shù).
其中,正確的說法是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 .
(1)求f(x)的周期及其圖象的對稱中心;
(2)△ABC中,角A、B、C所對的邊分別是a、b、c,滿足(2a﹣c)cosB=bcosC,求f(B)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+bx,(a,b為常數(shù),且a≠0)滿足條件f(2﹣x)=f(x﹣1),且方程f(x)=x有兩個(gè)相等的實(shí)根.
(1)求f(x)的解析式;
(2)設(shè)g(x)=kx+1,若F(x)=g(x)﹣f(x),求F(x)在[1,2]上的最小值;
(3)是否存在實(shí)數(shù)m,n(m<n),使f(x)的定義域和值域分別為[m,n]與[2m,2n],若存在,求出m,n的值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com