【題目】如圖,平行四邊形ABCD中,CD=1,∠BCD=60°,BD⊥CD,正方形ADEF,且面ADEF⊥面ABCD.
(Ⅰ)求證:BD⊥平面ECD.
(Ⅱ)求D點(diǎn)到面CEB的距離.

【答案】證明:(I)∵四邊形ADEF為正方形, ∴ED⊥AD,
又∵平面ADEF⊥平面ABCD,平面ADEF∩平面ABCD=AD,
∴ED⊥平面ABCD,∴ED⊥BD.
又∵BD⊥CD,ED∩CD=D,
∴BD⊥平面ECD.
( II)解:∵CD=1,∠BCD=60°,BD⊥CD,
又∵正方形ADEF,∴CB=2,CE= ,
,∴ ,
Rt△BCD的面積等于 SBCD= 1 =
由得( I)ED⊥平面ABCD,∴點(diǎn)E到平面BCD的距離為ED=2,設(shè)點(diǎn)D到到面CEB的距離為h,
= ,∴h= ,
即點(diǎn)D到到面CEB的距離為
【解析】( I)由條件證明ED⊥BD,再根據(jù)BD⊥CD,利用直線和平面垂直的判定定理證得BD⊥平面ECD. II)先求△CBE的面積,Rt△BCD的面積,設(shè)點(diǎn)D到到面CEB的距離為h,利用等體積法求點(diǎn)D到平面CBE的距離h的值.
【考點(diǎn)精析】本題主要考查了直線與平面垂直的判定的相關(guān)知識點(diǎn),需要掌握一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是平行四邊形,∠BCD=60°,AB=2AD,PD⊥平面ABCD,點(diǎn)M為PC的中點(diǎn).

(1)求證:PA∥平面BMD;
(2)求證:AD⊥PB;
(3)若AB=PD=2,求點(diǎn)A到平面BMD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各式中,表示y是x的函數(shù)的有( )
①y=x﹣(x﹣3);
②y= + ;
③y=
④y=
A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx,g(x)=x2 . (Ⅰ)求函數(shù)h(x)=f(x)﹣x+1的最大值;
(Ⅱ)對于任意x1 , x2∈(0,+∞),且x1<x2 , 是否存在實(shí)數(shù)m,使mg(x1)﹣mg(x2)﹣x2f(x2)+x1f(x1)恒為正數(shù)?若存在,求出m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知結(jié)論:“在正三角形ABC中,若D是邊BC的中點(diǎn),G是三角形ABC的重心,則 ”,若把該結(jié)論推廣到空間,則有結(jié)論:“在棱長都相等的四面體ABCD中,若△BCD的中心為M,四面體內(nèi)部一點(diǎn)O到四面體各面的距離都相等,則 =(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列有關(guān)命題說法正確的是(
A.命題p:“?x∈R,sinx+cosx= ”,則?p是真命題
B.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分條件
C.命題“?x∈R,使得x2+x+1<0“的否定是:“?x∈R,x2+x+1<0”
D.“a>l”是“y=logax(a>0且a≠1)在(0,+∞)上為增函數(shù)”的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐E﹣ABCD中,底面ABCD為正方形,EC⊥平面ABCD,AB= ,CE=1,G為AC與BD交點(diǎn),F(xiàn)為EG中點(diǎn), (Ⅰ)求證:CF⊥平面BDE;
(Ⅱ)求二面角A﹣BE﹣D的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】極坐標(biāo)系與直角坐標(biāo)系xoy有相同的長度單位,以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸.已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的極坐標(biāo)方程為ρsin2θ=8cosθ. (I)求C的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線l與曲線C交于A,B兩點(diǎn),求弦長|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= 的定義域?yàn)榧螦,B={x∈Z|0<x<10},C={x∈R|2a+3<x<a+5}.
(1)求A,(RA)∩B;
(2)若A∩C=C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案