【題目】如圖,四棱錐中,底面,,的中點(diǎn).

(1)求證:;

(2)求證:

(3)求二面角E-AB-C的正切值

【答案】(1)見解析;(2)見解析;(3)

【解析】

(1)根據(jù)線面垂直得到線線垂直;(2)由等腰三角形的性質(zhì)得到由(1)推得,故,進(jìn)而得到結(jié)果;(3)過點(diǎn)EEFAC,垂足為.過點(diǎn)FFGAB,垂足為G.連結(jié)EG,是二面角的一個(gè)平面角,根據(jù)直角三角形的性質(zhì)求解即可.

.

易知,故

(1)證明:底面,

,故

,故

(2)證明:,,故

的中點(diǎn),故

由(1)知,從而,故

易知,故

(3)過點(diǎn)E作EF⊥AC,垂足為.過點(diǎn)F作FG⊥AB,垂足為G.連結(jié)EG

∵PA⊥AC, ∴PA//EF ∴EF⊥底面且F是AC中點(diǎn)

∴故是二面角的一個(gè)平面角.

設(shè),則PA=BC=,EF=AF=

從而FG=,故

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,四點(diǎn),中恰有兩個(gè)點(diǎn)為橢圓的頂點(diǎn),一個(gè)點(diǎn)為橢圓的焦點(diǎn).

(1)求橢圓的方程;

(2)若斜率為1的直線與橢圓交于不同的兩點(diǎn),且,求直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) , 對(duì)任意, ,不等式恒成立,則正數(shù)的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(選修4-4 坐標(biāo)系與參數(shù)方程) 以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,設(shè)曲線C的參數(shù)方程為 (是參數(shù)),直線的極坐標(biāo)方程為.

1)求直線的直角坐標(biāo)方程和曲線C的普通方程;

2)設(shè)點(diǎn)P為曲線C上任意一點(diǎn),求點(diǎn)P到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)為常數(shù), 為自然對(duì)數(shù)的底數(shù)).

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)內(nèi)存在三個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}與{bn}滿足:①a1=a<0,b1=b>0,②當(dāng)k≥2時(shí),若ak1+bk1≥0,則ak=ak1 , bk= ;若ak1+bk1<0,則ak= ,bk=bk1
(Ⅰ)若a=﹣1,b=1,求a2 , b2 , a3 , b3的值;
(Ⅱ)設(shè)Sn=(b1﹣a1)+(b2﹣a2)+…+(bn﹣an),求Sn(用a,b表示);
(Ⅲ)若存在n∈N* , 對(duì)任意正整數(shù)k,當(dāng)2≤k≤n時(shí),恒有bk1>bk , 求n的最大值(用a,b表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義函數(shù)F(a,b)= (a+b﹣|a﹣b|)(a,b∈R),設(shè)函數(shù)f(x)=﹣x2+2x+4,g(x)=x+2(x∈R)函數(shù)F(f(x),g(x))的最大值與零點(diǎn)之和為(
A.4
B.6
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖的程序框圖,則輸出S的值為(

A.2016
B.2
C.
D.﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是等差數(shù)列,Sn為{an}的前n項(xiàng)和,且a10=19,S10=100;數(shù)列{bn}對(duì)任意n∈N* , 總有b1b2b3…bn1bn=an+2成立.
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)記cn=(﹣1)n ,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案