【題目】設(shè)△ABC的內(nèi)角A、B、C的對(duì)應(yīng)邊分別為a、b、c,若向量 =(a﹣b,1)與向量 =(a﹣c,2)共線,且∠A=120°.
(1)a:b:c;
(2)若△ABC外接圓的半徑為14,求△ABC的面積.
【答案】
(1)解:∵向量 與向量 共線,可得: ,
∴2b=a+c,
設(shè)a=b﹣d,c=b+d,由已知,cosA=﹣ ,即 =﹣ ,
d=﹣ ,從而a= ,c= ,
∴a:b:c=7:5:3
(2)解:由正弦定理 =2R,得a=2RsinA=2×14× =14 ,
由(1)設(shè)a=7k,即k=2 ,
所以b=5k=10 ,c=2k=6 ,
所以S△ABC= bcsinA= ×10 ×6 × =45 ,
所以△ABC的面積為45
【解析】(1)利用向量共線的性質(zhì)可得2b=a+c,設(shè)a=b﹣d,c=b+d,由余弦定理解得d=﹣ ,進(jìn)而可得a= ,c= ,從而可求a:b:c.(2)由正弦定理可求a,由(1)可求b,c的值,利用三角形面積公式即可計(jì)算得解.
【考點(diǎn)精析】關(guān)于本題考查的正弦定理的定義,需要了解正弦定理:才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某技術(shù)公司新開發(fā)了A,B兩種新產(chǎn)品,其質(zhì)量按測(cè)試指標(biāo)劃分為:指標(biāo)大于或等于82為正品,小于82為次品,現(xiàn)隨機(jī)抽取這兩種產(chǎn)品各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如下:
測(cè)試指標(biāo) | [70,76) | [76,82) | [82,88) | [88,94) | [94,100] |
產(chǎn)品A | 8 | 12 | 40 | 32 | 8 |
產(chǎn)品B | 7 | 18 | 40 | 29 | 6 |
(1)試分別估計(jì)產(chǎn)品A,產(chǎn)品B為正品的概率;
(2)生產(chǎn)一件產(chǎn)品A,若是正品可盈利80元,次品則虧損10元;生產(chǎn)一件產(chǎn)品B,若是正品可盈利100元,次品則虧損20元;在(1)的前提下.記X為生產(chǎn)一件產(chǎn)品A和一件產(chǎn)品B所得的總利潤(rùn),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) (a>0).
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)在點(diǎn)(2,f(2))處的切線方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若f(x)≥2lnx在[1,+∞)上恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線C的極坐標(biāo)方程為 ρ=2cosθ,直線l的極坐標(biāo)方程為ρsin(θ+ )=m.若直線l與曲線C有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=cos2x,g(x)= sinxcosx.
(1)若直線x=a是函數(shù)y=f(x)的圖象的一條對(duì)稱軸,求g(2a)的值;
(2)若0≤x≤ ,求h(x)=f(x)+g(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)在(0, 2π)內(nèi)有兩個(gè)不同零點(diǎn)、。
(1)求實(shí)數(shù)的取值范圍;
(2)求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓上的動(dòng)點(diǎn),點(diǎn)Q在NP上,點(diǎn)G在MP上,且滿足.
(I)求點(diǎn)G的軌跡C的方程
(II)過(guò)點(diǎn)(2,0)作直線,與曲線C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),設(shè) 是否存在這樣的直線,使四邊形OASB的對(duì)角線相等(即|OS|=|AB|)?若存在,求出直線的方程若不存在,試說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(2﹣a)lnx+ +2ax(a∈R).
(Ⅰ)當(dāng)a=0時(shí),求f(x)的極值;
(Ⅱ)當(dāng)a<0時(shí),求f(x)單調(diào)區(qū)間;
(Ⅲ)若對(duì)任意a∈(﹣3,﹣2)及x1 , x2∈[1,3],恒有(m+ln3)a﹣2ln3>|f(x1)﹣f(x2)|成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(選修4﹣4:坐標(biāo)系與參數(shù)方程)
已知直線l過(guò)點(diǎn)P(﹣1,2),且傾斜角為 ,圓方程為 .
(1)求直線l的參數(shù)方程;
(2)設(shè)直線l與圓交與M、N兩點(diǎn),求|PM||PN|的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com