【題目】已知橢圓的離心率,直線(xiàn)與圓相切.
(1)求橢圓的方程;
(2)已知定點(diǎn),若直線(xiàn)與橢圓相交于兩點(diǎn),試判斷是否存在實(shí)數(shù),使得以為直徑的圓過(guò)定點(diǎn)?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)存在實(shí)數(shù)使得以為直徑的圓過(guò)定點(diǎn).
【解析】試題分析: (1)圓心到切線(xiàn)距離等于半徑得,即,再根據(jù)離心率,解得,(2)由以為直徑的圓過(guò)點(diǎn),得,設(shè)坐標(biāo)轉(zhuǎn)化條件得,將直線(xiàn)方程與橢圓方程聯(lián)立,利用韋達(dá)定理得,,代入條件并化簡(jiǎn)得.
試題解析:(1)因?yàn)橹本(xiàn):與圓相切,
∴,
∴,
∵橢圓的離心率,
∴,
∴,
∴所求橢圓的方程是.
(2)直線(xiàn)代入橢圓方程,消去可得:
∴,∴或,
設(shè),則有,,
若以為直徑的圓過(guò)點(diǎn),則,
∵,,
∴
∴
∴,
解得,
所以存在實(shí)數(shù)使得以為直徑的圓過(guò)定點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在上的函數(shù),如果滿(mǎn)足:對(duì)任意,存在常數(shù),都有成立,則稱(chēng)是上的有界函數(shù),其中稱(chēng)為函數(shù)的上界,已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請(qǐng)說(shuō)明理由;
(2)若函數(shù)在上是以4為上界的有界函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=5x+x-2,g(x)=log5x+x-2的零點(diǎn)分別為x1,x2,則x1+x2的值為_(kāi)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的對(duì)角線(xiàn)AC與BD交于點(diǎn)O,點(diǎn)E,F分別在AD,CD上,AE=CF,EF交BD于點(diǎn)H.將△DEF沿EF折到△D′EF的位置.
(1)證明:AC⊥HD′;
(2)若AB=5,AC=6,AE=,OD′=2,求五棱錐D′ABCFE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,得曲線(xiàn)的極坐標(biāo)方程為 .
(1)化曲線(xiàn)的參數(shù)方程為普通方程,化曲線(xiàn)的極坐標(biāo)方程為直角坐標(biāo)方程;
(2)直線(xiàn)(為參數(shù))過(guò)曲線(xiàn)與軸負(fù)半軸的交點(diǎn),求與直線(xiàn)平行且與曲線(xiàn)相切的直線(xiàn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=xln x-(x-1)(ax-a+1)(a∈R).
(1)若a=0,判斷函數(shù)f(x)的單調(diào)性;
(2)若x>1時(shí),f(x)<0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨機(jī)擲兩枚質(zhì)地均勻的骰子,它們向上的點(diǎn)數(shù)之和不超過(guò)5的概率記為p1,點(diǎn)數(shù)之和大于5的概率記為p2,點(diǎn)數(shù)之和為偶數(shù)的概率記為p3,則
( )
A. p1<p2<p3 B. p2<p1<p3 C. p1<p3<p2 D. p3<p1<p2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】表示一位騎自行車(chē)和一位騎摩托車(chē)的旅行者在相距80 km的甲、乙兩城間從甲城到乙城所行駛的路程與時(shí)間之間的函數(shù)關(guān)系,有人根據(jù)函數(shù)圖象,提出了關(guān)于這兩個(gè)旅行者的如下信息:
①騎自行車(chē)者比騎摩托車(chē)者早出發(fā)3 h,晚到1 h;
②騎自行車(chē)者是變速運(yùn)動(dòng),騎摩托車(chē)者是勻速運(yùn)動(dòng);
③騎摩托車(chē)者在出發(fā)1.5 h后追上了騎自行車(chē)者;
④騎摩托車(chē)者在出發(fā)1.5 h后與騎自行車(chē)者速度一樣.
其中,正確信息的序號(hào)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班主任對(duì)全班50名學(xué)生的學(xué)習(xí)積極性和對(duì)待班級(jí)工作的態(tài)度進(jìn)行了調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下表所示:
積極參加班級(jí)工作 | 不太主動(dòng)參加班級(jí)工作 | 合計(jì) | |
學(xué)習(xí)積極性一般 | 6 | 19 | 25 |
合計(jì) | 24 | 26 | 50 |
(1)如果隨機(jī)抽查這個(gè)班的一名學(xué)生,那么抽到積極參加班級(jí)工作的學(xué)生的概率是多少?抽到不太主動(dòng)參加班級(jí)工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(2)判斷是否有的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與對(duì)待班級(jí)工作的態(tài)度有關(guān)系?
附: , n=a+b+c+d.
P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com