考點(diǎn):反函數(shù),函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:反函數(shù)f-1(x)的單調(diào)性與原函數(shù)f(x)的單調(diào)性相同,故只需證明f(x)的單調(diào)性即可,定義法可判.
解答:
解:由反函數(shù)的性質(zhì)可得f
-1(x)的單調(diào)性與f(x)=
()2(x>0)的單調(diào)性相同,
故只需證明f(x)的單調(diào)性即可,
設(shè)任意x
1,x
2>0且x
1<x
2,則f(x
1)-f(x
2)
=
()2-
()2=
x12(x22+1)2-x22(x12+1)2 |
(x1+1)2(x22+1)2 |
=
(x1-x2)(2x1x2+x1+x2) |
(x1+1)2(x22+1)2 |
,
∵x
1,x
2>0且x
1<x
2,
∴x
1-x
2<0,
又2x
1x
2+x
1+x
2>0,
(x12+1)2(x22+1)2>0,
∴
(x1-x2)(2x1x2+x1+x2) |
(x1+1)2(x22+1)2 |
<0,即f(x
1)<f(x
2)
∴函數(shù)f(x)=
()2(x>0)為單調(diào)遞增函數(shù),
∴f
-1(x)為單調(diào)遞增函數(shù).
點(diǎn)評(píng):本題考查反函數(shù)的性質(zhì),涉及定義法證明函數(shù)的單調(diào)性,屬基礎(chǔ)題.