【題目】設(shè)雙曲線的左、右焦點分別為F1,F2,過點F2的直線分別交雙曲線左、右兩支于點P,Q,點M為線段PQ的中點,若P,Q,F1都在以M為圓心的圓上,且,則雙曲線C的離心率為( )
A.B.2C.D.2
【答案】C
【解析】
判斷PQ⊥MF1,則|PF1|=QF1|,說明三角形PF1Q是等腰直角三角形,設(shè)|PF1|=t,利用雙曲線的定義求出|PF2|,在Rt△MF1F2中,結(jié)合勾股定理推出2a=2c,即可求解雙曲線C的離心率.
以PQ為直徑的圓經(jīng)過點F1,則,又,
可知PQ⊥MF1,則|PF1|=|QF1|,故三角形PF1Q是等腰直角三角形,
設(shè)|PF1|=t,則|PQ|t,
由雙曲線的定義可知:|PF2|=t+2a,|QF2|=t﹣2a,可得|PQ|=4a,
則t=4a,即t=2a,則:|PF2|,
在Rt△MF1F2中,|MF1|2a,|MF2|=|PF1|﹣|PM|=2a,
由勾股定理可知|F1F2|=2a=2c,
則雙曲線C的離心率為:e.
故選:C.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為,準(zhǔn)線與軸交于點,過點的直線交拋物線于,兩點,點在第一象限.
若,,求直線的方程;
若,點為準(zhǔn)線上任意一點,求證:直線,,的斜率成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種治療新型冠狀病毒感染肺炎的復(fù)方中藥產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,質(zhì)量指標(biāo)越大表明質(zhì)量越好,為了提高產(chǎn)品質(zhì)量,我國醫(yī)療科研專家攻堅克難,新研發(fā)出、兩種新配方,在兩種新配方生產(chǎn)的產(chǎn)品中隨機(jī)抽取數(shù)量相同的樣本,測量這些產(chǎn)品的質(zhì)量指標(biāo)值,規(guī)定指標(biāo)值小于時為廢品,指標(biāo)值在為一等品,大于為特等品.現(xiàn)把測量數(shù)據(jù)整理如下,其中配方廢品有件.
配方的頻數(shù)分布表
質(zhì)量指標(biāo)值分組 | |||||
頻數(shù) |
(1)求,的值;
(2)試確定配方和配方哪一種好?(說明:在統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某植物園內(nèi)有一塊圓形區(qū)域,在其內(nèi)接四邊形內(nèi)種植了兩種花卉,其中區(qū)域內(nèi)種植蘭花,區(qū)域內(nèi)種植丁香花,對角線BD是一條觀賞小道.測量可知邊界,, .
(1)求觀賞小道BD的長及種植區(qū)域的面積;
(2)因地理條件限制,種植丁香花的邊界BC,CD不能變更,而邊界AB,AD可以調(diào)整,使得種植蘭花的面積有所增加,請在BAD上設(shè)計一點P,使得種植區(qū)域改造后的新區(qū)域(四邊形)的面積最大,并求出這個面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】綠水青山就是金山銀山.某山村為做好水土保持,退耕還林,在本村的山坡上種植水果,并推出山村游等旅游項目.為預(yù)估今年7月份游客購買水果的情況,隨機(jī)抽樣統(tǒng)計了去年7月份100名游客的購買金額.分組如下:,, ,得到如圖所示的頻率分布直方圖:
(1)請用抽樣的數(shù)據(jù)估計今年7月份游客人均購買水果的金額(同一組中的數(shù)據(jù)用該組區(qū)間中點作代表).
(2)若把去年7月份購買水果不低于80元的游客,稱為“水果達(dá)人”. 填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有95%的把握認(rèn)為“水果達(dá)人”與性別有關(guān)系?
水果達(dá)人 | 非水果達(dá)人 | 合計 | |
男 | 10 | ||
女 | 30 | ||
合計 |
(3)為吸引顧客,商家特推出兩種促銷方案.方案一:每滿80元可立減10元;方案二:金額超過80元可抽獎三次,每次中獎的概率為,且每次抽獎互不影響,中獎1次打9折,中獎2次打8折,中獎3次打7折.若每斤水果10元,你打算購買12斤水果,請從實際付款金額的數(shù)學(xué)期望的角度分析應(yīng)該選擇哪種優(yōu)惠方案.
附:參考公式和數(shù)據(jù):,.臨界值表:
2.072 | 2.706 | 3.841 | 6.635 | 7.879 | |
0.150 | 0.100 | 0.050 | 0.010 | 0.005 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,已知橢圓的離心率為,為橢圓上位于第一象限上的點,為橢圓的上頂點,直線與軸相交于點,,的面積為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線過橢圓的右焦點,且與橢圓相交于、兩點(、在直線的同側(cè)),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】意大利數(shù)學(xué)家斐波那契的《算經(jīng)》中記載了一個有趣的問題:已知一對兔子每個月可以生一對兔子,而一對兔子出生后在第二個月就開始生小兔子.假如沒有發(fā)生死亡現(xiàn)象,那么兔子對數(shù)依次為:1,1,2,3,5,8,13,21,34,55,89,144……,這就是著名的斐波那契數(shù)列,它的遞推公式是,其中,.若從該數(shù)列的前120項中隨機(jī)地抽取一個數(shù),則這個數(shù)是奇數(shù)的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方體ABCD﹣HKLE中,底面ABCD是邊長為3的正方形,對角線AC與BD相交于點O,點F在線段AH上,且,BE與底面ABCD所成角為.
(1)求證:AC⊥BE;
(2)求二面角F﹣BE﹣D的余弦值;
(3)設(shè)點M在線段BD上,且AM//平面BEF,求DM的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校在一天上午的5節(jié)課中,安排語文、數(shù)學(xué)、英語三門文化課和音樂、美術(shù)兩門藝術(shù)課各1節(jié),且相鄰兩節(jié)文化課之間最多安排1節(jié)藝術(shù)課,則不同的排課方法共有________種(用數(shù)字作答).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com