(本題滿分14分)設(shè).

(1)判斷函數(shù)的單調(diào)性;

(2)設(shè)在區(qū)間上的最大值,寫出的表達(dá)式.

 

【答案】

(1)為函數(shù)的單調(diào)增區(qū)間,為函數(shù)的單調(diào)減區(qū)間;

(2)

【解析】(1)先求出,然后根據(jù)導(dǎo)數(shù)大(。┯诹悖芯科鋯握{(diào)性即可.

(II)在(I)的基礎(chǔ)上,要根據(jù)a的取值范圍討論它在[1,2]上的單調(diào)性,進(jìn)而可確定出f(x)在[1,2]上的最大值.注意連續(xù)函數(shù)在閉區(qū)間上的最值問題不在極值處取得就在區(qū)間端點(diǎn)處取得.

解:(1)由已知,

注意到,

,得;解,得.

所以為函數(shù)的單調(diào)增區(qū)間,為函數(shù)的單調(diào)減區(qū)間. ……5分

(2)由(1)知

當(dāng),即時,的最大值為;            …………2分

當(dāng),即時,的最大值為;             …………2分

當(dāng),即時,                                   

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012082413580248189136/SYS201208241358442516829819_DA.files/image020.png">,

所以,當(dāng)時,的最大值為,              …………2分

當(dāng)時,的最大值為,               …………2分

綜上,                             …………1分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)

設(shè)函數(shù),。

(1)若,過兩點(diǎn)的中點(diǎn)作軸的垂線交曲線于點(diǎn),求證:曲線在點(diǎn)處的切線過點(diǎn);

(2)若,當(dāng)恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)設(shè)函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)求在[—1,2]上的最小值; (3)當(dāng)時,用數(shù)學(xué)歸納法證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011——2012學(xué)年湖北省洪湖二中高三八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本題滿分14分)設(shè)橢圓的左、右焦點(diǎn)分別為F1
F2,直線過橢圓的一個焦點(diǎn)F2且與橢圓交于P、Q兩點(diǎn),若的周長為
(1)求橢圓C的方程;
(2)設(shè)橢圓C經(jīng)過伸縮變換變成曲線,直線與曲線相切
且與橢圓C交于不同的兩點(diǎn)A、B,若,求面積的取值范圍。(O為坐標(biāo)原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省杭州市高三寒假作業(yè)數(shù)學(xué)卷三 題型:解答題

(本題滿分14分)設(shè)M是由滿足下列條件的函數(shù)構(gòu)成的集合:“①方有實(shí)數(shù)根;②函數(shù)的導(dǎo)數(shù)滿足

 (I)證明:函數(shù)是集合M中的元素;

 (II)證明:函數(shù)具有下面的性質(zhì):對于任意,都存在,使得等式成立。 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省揭陽市高三調(diào)研檢測數(shù)學(xué)理卷 題型:解答題

本題滿分14分)

設(shè)函數(shù).

(1)若,求函數(shù)的極值;

(2)若,試確定的單調(diào)性;

(3)記,且上的最大值為M,證明:

 

 

查看答案和解析>>

同步練習(xí)冊答案