已知A、B兩點(diǎn)的坐標(biāo)分別為A(cos
x
2
,sin
x
2
),B(cos
3x
2
,-sin
3x
2
),其中x∈[-
π
2
,0].

(Ⅰ)求|
AB
|的表達(dá)式;
(Ⅱ)若
OA
OB
=
1
3
(O為坐標(biāo)原點(diǎn)),求tanx的值;
(Ⅲ)若f(x)=
AB
2
+4λ|
AB
|(λ∈R)
,求函數(shù)f(x)的最小值.
分析:(1)先求出向量向量
AB
,再根據(jù)向量模的運(yùn)算求出答案.
(2)根據(jù)
OA
OB
=
1
3
先求出cos2x=
1
3
,進(jìn)而可得sinx、cosx的值,最終求出tanx的值.
(3)根據(jù)題中條件先表示出函數(shù)f(x)的解析式,再對(duì)λ進(jìn)行討論即可.
解答:解:(I)|
AB
|=
(cos
3x
2
-cos
x
2
)
2
+(-sin
3x
2
-sin
x
2
)
2

=
2-2cos2x

=
4sin2x

=-2sinx(∵x∈[-
π
2
,0])
;
(Ⅱ)∵
OA
OB
=cos2x=
1
3
,
sin2x=
1-cos2x
2
=
1
3
,cos2x=
1+cos2x
2
=
2
3

x∈[-
π
2
,0],∴sinx=-
3
3
,cosx=
6
3
.

tanx=-
2
2
;
(Ⅲ)f(x)=
AB
2
+4λ|
AB
|=4sin2x-8λsinx

=4(sinx-λ)2-4λ2
x∈[-
π
2
,0],∴sinx∈[-1,0]
,
當(dāng)-1≤λ≤0時(shí),f(x)的最小值為-4λ2,此時(shí)sinx=λ,
當(dāng)λ<-1時(shí),f(x)的最小值為4+8λ,此時(shí)sinx=-1,
當(dāng)λ>0時(shí),f(x)的最小值為0,此時(shí)sinx=0.
點(diǎn)評(píng):本題主要考查向量點(diǎn)乘運(yùn)算和求模的方法.向量和三角函數(shù)的綜合題每年必考,是高考的熱點(diǎn)問(wèn)題,要給予重視.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在空間直角坐標(biāo)系中,已知A,B兩點(diǎn)的坐標(biāo)分別是A(2,3,5),B(3,1,4),則這兩點(diǎn)間的距離|AB|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B兩點(diǎn)的坐標(biāo)分別為A(-1,0)、B(1,0),動(dòng)點(diǎn)M滿(mǎn)足MA+MB=2
2

(1)求動(dòng)點(diǎn)M的軌跡方程;
(2)若點(diǎn)C在(1)中的軌跡上,且滿(mǎn)足△ABC為直角三角形,求點(diǎn)C的坐標(biāo);
(3)設(shè)經(jīng)過(guò)B點(diǎn)的直線(xiàn)l與(1)中的軌跡交于P、Q兩點(diǎn),問(wèn)是否存在這樣的直線(xiàn)l使得△APQ為正三角形,若存在求出直線(xiàn)l的方程,若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正方形ABCD四頂點(diǎn)A,B,C,D按逆時(shí)針?lè)较蚺帕校阎狝、B兩點(diǎn)的坐標(biāo)A(0,0),B(3,1),則C點(diǎn)的坐標(biāo)是
(2,4)
(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年廣東省中山市高一(上)期末數(shù)學(xué)試卷(解析版) 題型:填空題

在空間直角坐標(biāo)系中,已知A,B兩點(diǎn)的坐標(biāo)分別是A(2,3,5),B(3,1,4),則這兩點(diǎn)間的距離|AB|=   

查看答案和解析>>

同步練習(xí)冊(cè)答案