已知函數(shù)
(Ⅰ)若在(0,)單調(diào)遞減,求a的最小值
(Ⅱ)若有兩個(gè)極值點(diǎn),求a的取值范圍.
(Ⅰ)a的最小值為1; (Ⅱ)(0,1).
解析試題分析:(Ⅰ)將“f(x)在(0,)單調(diào)遞減”轉(zhuǎn)化為“"x∈(0,+∞),a≥”,然后才有構(gòu)造函數(shù)的思想求解函數(shù)的最大值即可;(Ⅱ)通過對(duì)參數(shù)a 與1的討論,借助求導(dǎo)的方法研究函數(shù)的單調(diào)性,進(jìn)而分析保證有兩個(gè)極值點(diǎn)的條件,通過解不等式求解求a的取值范圍.
試題解析:(Ⅰ)f¢(x)=lnx+1-ax.
f(x)單調(diào)遞減當(dāng)且僅當(dāng)f¢(x)≤0,即"x∈(0,+∞),
a≥. ①
設(shè)g(x)=,則g¢(x)=-.
當(dāng)x∈(0,1)時(shí),g¢(x)>0,g(x)單調(diào)遞增;
當(dāng)x∈(1,+∞)時(shí),g¢(x)<0,g(x)單調(diào)遞減.
所以g(x)≤g(1)=1,故a的最小值為1. 5分
(Ⅱ)(1)由(Ⅰ)知,當(dāng)a≥1時(shí),f(x)沒有極值點(diǎn).
(2)當(dāng)a≤0時(shí),f¢(x)單調(diào)遞增,f¢(x)至多有一個(gè)零點(diǎn),f(x)不可能有兩個(gè)極值點(diǎn). 7分
(3)當(dāng)0<a<1時(shí),設(shè)h(x)=lnx+1-ax,則h¢(x)=-a.
當(dāng)x∈(0,)時(shí),h¢(x)>0,h(x)單調(diào)遞增;
當(dāng)x∈(,+∞)時(shí),h¢(x)<0,h(x)單調(diào)遞減. 9分
因?yàn)閒¢()=h()=ln>0,f¢()=h()=-<0,
所以f(x)在區(qū)間(,)有一極小值點(diǎn)x1. 10分
由(Ⅰ)中的①式,有1≥,即lnx≤x-1,則ln≤-1,
故f¢()=h()=ln2+2ln+1-≤ln2+2(-1)+1-=ln2-1<0.
所以f(x)在區(qū)間(,)有一極大值點(diǎn)x2.
綜上所述,a的取值范圍是(0,1).
考點(diǎn):1.函數(shù)的單調(diào)性、極值和最值;2.不等式恒成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知a>0,函數(shù).
(1)若,求函數(shù)的極值,
(2)是否存在實(shí)數(shù),使得成立?若存在,求出實(shí)數(shù)的取值集合;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)為實(shí)數(shù),函數(shù)
(Ⅰ)求的單調(diào)區(qū)間與極值;
(Ⅱ)求證:當(dāng)且時(shí),
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)若為的極值點(diǎn),求實(shí)數(shù)的值;
(2)若在上為增函數(shù),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),方程有實(shí)根,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)m為實(shí)數(shù),函數(shù)f(x)=-+2x+m,x∈R
(Ⅰ)求f(x)的單調(diào)區(qū)間與極值;
(Ⅱ)求證:當(dāng)m≤1且x>0時(shí),>2+2mx+1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)f(x)=ex+ax-1(e為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)當(dāng)a=1時(shí),求過點(diǎn)(1,f(1))處的切線與坐標(biāo)軸圍成的三角形的面積;
(II)若f(x)x2在(0,1 )上恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知為函數(shù)圖象上一點(diǎn),O為坐標(biāo)原點(diǎn),記直線的斜率.
(1)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)m的取值范圍;
(2)當(dāng) 時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com