【題目】已知直線ly=x+m,m∈R

I)若以點M2,0)為圓心的圓與直線l相切與點P,且點Py軸上,求該圓的方程;

II)若直線l關于x軸對稱的直線為,問直線與拋物線Cx2=4y是否相切?說明理由.

【答案】I

II)當m=1時,直線與拋物線C相切;當時,直線與拋物線C不相切.

【解析】

1)依題意,點P的坐標為(0,m

因為圓與直線l相切與點P∴MP⊥l,

解得m=2,即點P的坐標為(02

從而圓的半徑r==

故所求圓的方程為;

2)因為直線l的方程為y=x+m

所以直線的方程為y=xm代入

∴m=1,即直線與拋物線C相切

m≠1時,,即直線與拋物線C不相切

綜上,當m=1時,直線與拋物線C相切;

m≠1時,直線與拋物線C不相切.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】202048日零時正式解除離漢通道管控,這標志著封城76天的武漢打開城門了.在疫情防控常態(tài)下,武漢市有序復工復產(chǎn)復市,但是仍然不能麻痹大意,仍然要保持警惕,嚴密防范、慎終如始.為科學合理地做好小區(qū)管理工作,結(jié)合復工復產(chǎn)復市的實際需要,某小區(qū)物業(yè)提供了,兩種小區(qū)管理方案,為了了解哪一種方案最為合理有效,物業(yè)隨機調(diào)查了50名男業(yè)主和50名女業(yè)主,每位業(yè)主對,兩種小區(qū)管理方案進行了投票(只能投給一種方案),得到下面的列聯(lián)表:

方案

方案

男業(yè)主

35

15

女業(yè)主

25

25

1)分別估計,方案獲得業(yè)主投票的概率;

2)判斷能否有95%的把握認為投票選取管理方案與性別有關.

附:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的各項均為正數(shù),其前n項的積為,記,.

1)若數(shù)列為等比數(shù)列,數(shù)列為等差數(shù)列,求數(shù)列的公比.

2)若,,且

①求數(shù)列的通項公式.

②記,那么數(shù)列中是否存在兩項,(s,t均為正偶數(shù),且),使得數(shù)列,,成等差數(shù)列?若存在,求s,t的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C的頂點為坐標原點O,對稱軸為軸,其準線為.

1)求拋物線C的方程;

2)設直線,對任意的拋物線C上都存在四個點到直線l的距離為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C)的焦距為4,其短軸的兩個端點與長軸的一個端點構(gòu)成正三角形.

1)求橢圓C的標準方程;

2)設F為橢圓C的左焦點,T為直線上任意一點,過FTF的垂線交橢圓C于點PQ.

i)證明:OT平分線段PQ(其中O為坐標原點);

ii)當最小時,求點T的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面,底面是直角梯形,其中,,,,為棱上的點,且

1)求證:平面;

2)求二面角的余弦值;

3)設為棱上的點(不與重合),且直線與平面所成角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)上不具有單調(diào)性.

(1)求實數(shù)的取值范圍;

(2)若的導函數(shù),設,試證明對任意兩個不相等正數(shù),不等式恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,,四邊形和四邊形是兩個全等的等腰梯形.

(1)求證:四邊形為矩形;

(2)若平面平面,,,,求多面體的體積.

查看答案和解析>>

同步練習冊答案