【題目】如圖,在多面體中,,四邊形和四邊形是兩個(gè)全等的等腰梯形.

(1)求證:四邊形為矩形;

(2)若平面平面,,,求多面體的體積.

【答案】(1)見(jiàn)證明;(2)

【解析】

1)根據(jù)全等的等腰梯形和已知條件得到,由此證得四邊形為平行四邊形. 分別取,的中點(diǎn),,連接,通過(guò)證明四點(diǎn)共面,且,且相交,由此證得平面,從而證得,由此證得四邊形為矩形.(2)連結(jié),,作,垂足為,則.先證明平面,然后證明平面,由此求得點(diǎn)到平面的距離、點(diǎn)到平面的距離,分別求得的體積,由此求得多面體的體積.

(1)證明:∵四邊形和四邊形是兩個(gè)全等的等腰梯形,

,∴四邊形為平行四邊形.

分別取的中點(diǎn),.

的中點(diǎn),∴,同理,∴.

的中點(diǎn),的中點(diǎn),∵,且.

,,四點(diǎn)共面,且四邊形是以為底的梯形.

,,且是平面內(nèi)的相交線,∴平面.

平面,∴,又,∴.

∴四邊形為矩形.

(2)解:連結(jié),,作,垂足為,則.

,,∴.

中,.

,平面平面,∴平面.

∵平面平面,平面平面平面

平面,∴點(diǎn)到平面的距離為2,同理,點(diǎn)到平面的距離為2,

,

,.

故多面體的體積為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且橢圓上一點(diǎn)的坐標(biāo)為.

(1)求橢圓的方程;

(2)設(shè)直線與橢圓交于,兩點(diǎn),且以線段為直徑的圓過(guò)橢圓的右頂點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù),

(Ⅰ)若曲線在點(diǎn)處的切線與直線平行,求的值;

(Ⅱ)若,問(wèn)函數(shù)有無(wú)極值點(diǎn)?若有,請(qǐng)求出極值點(diǎn)的個(gè)數(shù);若沒(méi)有,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐的底面為菱形,且,,,相交于點(diǎn).

1)求證:底面;

2)求直線與平面所成的角的值;

3)求平面與平面所成二面角的值.(用反三角函數(shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線上一點(diǎn),點(diǎn)是拋物線上異于的兩動(dòng)點(diǎn),且,則點(diǎn)到直線的距離的最大值是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C)的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,左焦點(diǎn)為.

1)求C的方程;

2)設(shè)C的右頂點(diǎn)為A,不過(guò)C左、右頂點(diǎn)的直線lC相交于MN兩點(diǎn),且.請(qǐng)問(wèn):直線l是否過(guò)定點(diǎn)?如果過(guò)定點(diǎn),求出該定點(diǎn)的坐標(biāo);如果不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若對(duì),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正方體的棱長(zhǎng)為1為線段,上的動(dòng)點(diǎn),過(guò)點(diǎn)的平面截該正方體的截面記為S,則下列命題正確的是______

①當(dāng)時(shí),S為等腰梯形;

②當(dāng)分別為,的中點(diǎn)時(shí),幾何體的體積為;

③當(dāng)M中點(diǎn)且時(shí),S的交點(diǎn)為R,滿足;

④當(dāng)M中點(diǎn)且時(shí),S為五邊形;

⑤當(dāng)時(shí),S的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點(diǎn).

(Ⅰ)求證:PC∥平面EBD;

(Ⅱ)求證:平面PBC⊥平面PCD.

查看答案和解析>>

同步練習(xí)冊(cè)答案