求以下的導(dǎo)函數(shù):
(1)y=x2sinx;
(2)y=
lnx
ex
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專(zhuān)題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)導(dǎo)數(shù)的運(yùn)算法則計(jì)算即可.
解答: 解:(1)y′=2xsinx+x2cosx;
(2)y=
1
x
ex-lnx•ex
e2x
=
1
xex
-
lnx
ex
,
點(diǎn)評(píng):本題主要考查了的導(dǎo)數(shù)的運(yùn)算法則,掌握法則是關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)雙曲線(xiàn)
x2
a2
-
y2
b2
=1(b>a>0)的右頂點(diǎn)A作斜率為1的直線(xiàn),該直線(xiàn)與雙曲線(xiàn)的一條漸近線(xiàn)y=
b
a
x交于點(diǎn)B,與另一條漸近線(xiàn)y=-
b
a
x交于點(diǎn)C,若A,B,C三點(diǎn)的橫坐標(biāo)成等比數(shù)列,則雙曲線(xiàn)的離心率為( 。
A、
13
B、
10
C、
5
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一直線(xiàn)被兩條直線(xiàn)L1:4x+6y+6=0,L2:3x-5y-6=0截得線(xiàn)段的中點(diǎn)是P(0,1),求此直線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)為奇函數(shù),當(dāng)x∈[-2,0]時(shí),f(x)=
1
3
x3+x2-2ax(a為實(shí)數(shù))
(1)若f(x)在x=-1處有極值,求a的值;
(2)求x∈(0,2]時(shí),f(x)的解析式;
(3)若f(x)在[
3
2
,2]上為增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿(mǎn)足a2=0,a6+a8=10.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)在各項(xiàng)均為正數(shù)的等比數(shù)列{bn}中,若b5b6=a4+a8,求log2b1+log2b2+…+log2b10的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(-3,1,4),則點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)B的坐標(biāo)為
 
;AB的長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知單位向量
e1
e2
的夾角為60°,且
a
=2
e1
+
e2
b
=-3
a
+2
e2
,求
a
b
a
b
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2位男生和3位女生共5位同學(xué)站成一排,若男生甲不站兩端,3位女生中有且只有兩位女生相鄰,則不同排法的種數(shù)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

試證明函數(shù)y=ln(3x+
1+9x2
)是奇函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案