已知函數(shù),
(1) 當(dāng)時(shí),求曲線處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間.

(1)  
(2)①的單調(diào)遞減區(qū)間為,,
②當(dāng)的單調(diào)遞減區(qū)間為,,單調(diào)遞增區(qū)間為,
③當(dāng)時(shí),的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

解析試題分析:(1)解:當(dāng)時(shí),,,   
所以處的切線方程為,                 
(II)解: ,當(dāng)時(shí),
又函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/26/d/ool592.png" style="vertical-align:middle;" />, 所以的單調(diào)遞減區(qū)間為,,                 
當(dāng) 時(shí),的單調(diào)遞減區(qū)間為,,單調(diào)遞增區(qū)間為,            
當(dāng)時(shí),的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.
點(diǎn)評(píng):本題以三次函數(shù)為載體,主要考查函數(shù)單調(diào)性的應(yīng)用、利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程、不等式的解法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)試判斷函數(shù)的單調(diào)性,并說(shuō)明理由;
(Ⅱ)若恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù))是定義在上的奇函數(shù),且時(shí),函數(shù)取極值1.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)令,若),不等式恒成立,求實(shí)數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù))的圖象如圖.根據(jù)圖象寫(xiě)出:

(1)函數(shù)的最大值;
(2)使值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù) 
(I) 解關(guān)于的不等式
(II)若函數(shù)的圖象恒在函數(shù)的上方,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù))是偶函數(shù)
(1)求的值;
(2)設(shè),若函數(shù)的圖像有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
求(1) 的定義域;
(2)判斷在其定義域上的奇偶性,并予以證明,
(3)求的解集。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知.
(1)若,解不等式
(2)若不等式對(duì)一切實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍;
(3)若,解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(1)求f(x)的單調(diào)區(qū)間;
(2)若當(dāng)x∈[-2,2]時(shí),不等式f(x)>m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案