已知函數(shù)f(x)=ax2+
1
x
,其中a∈R.
(1)討論函數(shù)f(x)的奇偶性,并證明你的結論;
(2)若函數(shù)f(x)在區(qū)間[1,+∞)上為增函數(shù),求a的取值范圍.
考點:函數(shù)奇偶性的判斷,函數(shù)單調(diào)性的判斷與證明
專題:綜合題,函數(shù)的性質(zhì)及應用
分析:(1)分a=0,a≠0兩種情況討論,利用奇偶性的定義可判斷;
(2)函數(shù)f(x)在區(qū)間[1,+∞)上為增函數(shù),等價于f′(x)≥0在[1,+∞)上恒成立,分離出參數(shù)化為函數(shù)的最值即可;
解答: 解:(1)當a=0時f(x)為奇函數(shù);當a≠0時f(x)為非奇非偶函數(shù).證明如下:
∵f(x)=ax2+
1
x
,
∴f(-x)=ax2-
1
x
,
當a=0時,f(-x)=-f(x)=-
1
x
,f(x)為奇函數(shù);
當a≠0時,f(-x)≠f(x),且f(-x)≠-f(x),
此時f(x)為非奇非偶函數(shù).
(2)f′(x)=2ax-
1
x2
,
∵f(x)在區(qū)間[1,+∞)上為增函數(shù),
∴f′(x)≥0在[1,+∞)上恒成立,即2a
1
x3
在[1,+∞)上恒成立,
1
x3
在在[1,+∞)上單調(diào)遞減,∴
1
x3
≤1

∴2a≥1,解得a
1
2
點評:該題考查函數(shù)的奇偶性、單調(diào)性的判斷,屬基礎題,熟記相關定義及其基本判斷方法是解題關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

現(xiàn)有男生3人,女生5人,從男生中選2人,女生中選1人參加數(shù)學、物理、化學三科競賽,要求每科均有1人參加,每名學生只參加一科競賽,則不同的參賽方法共有(  )種.
A、15B、30C、90D、180

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了檢驗“喜歡玩手機游戲與認為作業(yè)多”是否有關系,某班主任對班級的30名學生進行了調(diào)查,得到一個2×2列聯(lián)表:
認為作業(yè)多 認為作業(yè)不多 合計
喜歡玩手機游戲 18 2
不喜歡玩手機游戲 6
合計 30
(Ⅰ)請將上面的列聯(lián)表補充完整(在答題卡上直接填寫結果,不需要寫求解過程);
(Ⅱ)能否在犯錯誤的概率不超過0.005的前提下認為“喜歡玩手機游戲”與“認為作業(yè)多”有關系?
(Ⅲ)若從不喜歡玩手機游戲的人中隨機抽取3人,則至少2人認為作業(yè)不多的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從用0,1,2,3,4,5,6這七個數(shù)字中的任意兩個不同數(shù)字組成的二位數(shù)中隨機取數(shù),求:
(1)取得偶數(shù)的概率;
(2)取得完全平方數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(-1,-1),B(3,1),直線l過點C(0,
5
2
),且與AB平行,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD的底面是邊長為2的正方形,PD⊥平面ABCD,PD=2,E為AB的中點.
(1)求證:直線BC⊥平面PDC;
(2)求點E到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某次月考從甲、乙兩班中各抽取20個物理成績,整理數(shù)據(jù)得到莖葉圖如圖所示,根據(jù)莖葉圖解決下列問題.
(1)分別指出甲乙兩班物理樣本成績的中位數(shù);
(2)分別求甲乙兩班物理樣板成績的平均值;
(3)定義成績在80分以上為優(yōu)秀,現(xiàn)從甲乙兩班物理樣本成績中有放回地各隨機抽取兩次,每次抽取1個成績,設ξ表示抽出的成績中優(yōu)秀的個數(shù),求ξ的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}各項都是正數(shù),a1=2,an•an+1=m•4n,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求證:
a1a1
a2a2
anan
<4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,△ABC是⊙O的內(nèi)接三角形,PA是⊙O的切線,PB交AC于點E,交⊙O于點D,若PE=PA,∠ABC=60°,PD=1,BD=8,則BC=
 

查看答案和解析>>

同步練習冊答案