【題目】已知函數f(x)=2x , x∈(0,2)的值域為A,函數g(x)=log2(x﹣2a)+ (a<1)的定義域為B.
(Ⅰ)求集合A,B;
(Ⅱ)若BA,求實數a的取值范圍.
【答案】解:(Ⅰ)已知函數f(x)=2x , x∈(0,2)的值域為A,∴A=(1,4),
函數g(x)=log2(x﹣2a)+ (a<1)的定義域為B.
∴B=(2a,a+1),a<1,
(Ⅱ)若BA,則(2a,a+1)(1,4),
∴ ,解得: ≤a<1
【解析】(Ⅰ)根據指數函數以及對數函數的性質解出即可;(2)根據集合的包含關系得到關于a的不等式組,解出即可.
【考點精析】掌握集合的表示方法-特定字母法和函數的定義域及其求法是解答本題的根本,需要知道①自然語言法:用文字敘述的形式來描述集合.②列舉法:把集合中的元素一一列舉出來,寫在大括號內表示集合.③描述法:{|具有的性質},其中為集合的代表元素.④圖示法:用數軸或韋恩圖來表示集合;求函數的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數;②是分式函數時,定義域是使分母不為零的一切實數;③是偶次根式時,定義域是使被開方式為非負值時的實數的集合;④對數函數的真數大于零,當對數或指數函數的底數中含變量時,底數須大于零且不等于1,零(負)指數冪的底數不能為零.
科目:高中數學 來源: 題型:
【題目】下列命題:
①函數y=﹣ 在其定義域上是增函數;
②函數y= 是奇函數;
③函數y=log2(x﹣1)的圖象可由y=log2(x+1)的圖象向右平移2個單位得到;
④若( )a=( )b<1.則a<b<0
則下列正確命題的序號是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2﹣ (x>0),若存在實數m、n(m<n)使f(x)在區(qū)間(m,n)上的值域為(tm,tn),則實數t的取值范圍是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=﹣log3(9x)log3 ( ≤x≤27).
(1)設t=log3x,求t的取值范圍
(2)求f(x)的最小值,并指出f(x)取得最小值時x的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題p:方程x2+mx+1=0有兩個不等的負實數根;命題q:方程4x2+4(m﹣2)x+1=0無實數根.
(1)若“¬p”為假命題,求m范圍;
(2)若“p或q”為真命題,“p且q”為假命題,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,某公路 一側有一塊空地 ,其中 , .當地政府擬在中間開挖一個人工湖△OMN,其中M,N都在邊AB上(M,N不與A,B重合,M在A,N之間),且∠MON=30°.
(1)若M在距離A點2 km處,求點M,N之間的距離;
(2)為節(jié)省投入資金,人工湖△OMN的面積要盡可能。嚧_定M的位置,使△OMN的面積最小,并求出最小面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數g(x)=f(x)+2x,x∈R為奇函數.
(1)判斷函數f(x)的奇偶性;
(2)若x>0時,f(x)=log3x,求函數g(x)的解析式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,矩形中, , 分別為邊上的點,且,將沿折起至位置(如圖所示),連結,其中.
(Ⅰ) 求證: ;
(Ⅱ) 在線段上是否存在點使得?若存在,求出點的位置;若不存在,請說明理由.
(Ⅲ) 求點到的距離.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com