分析 設(shè)P(x0,y0),求得y=2lnx的導(dǎo)數(shù),可得切線的斜率和切線方程;求得圓上一點(diǎn)的切線方程,由直線重合的條件,可得二次函數(shù)y=$\frac{1}{2}$x(3-x),滿足經(jīng)過(guò)點(diǎn)P,O,M,即可得到所求最大值.
解答 解:設(shè)P(x0,y0),函數(shù)y=2lnx的導(dǎo)數(shù)為y′=$\frac{2}{x}$,
函數(shù)y=2lnx在點(diǎn)P處的切線方程為y-y0=$\frac{2}{{x}_{0}}$(x-x0),
即為$\frac{2}{{x}_{0}}$x-y+y0-2=0;
圓M:(x-3)2+y2=r2的上點(diǎn)P處的切線方程為(x0-3)(x-3)+yy0=r2,
即有(x0-3)x+yy0+9-3x0-r2=0;
由切線重合,可得
$\frac{2}{{x}_{0}-3}$=$\frac{-{x}_{0}}{{y}_{0}}$=$\frac{{x}_{0}({y}_{0}-2)}{9-3{x}_{0}-{r}^{2}}$,
即x0(3-x0)=2y0,
則P為二次函數(shù)y=$\frac{1}{2}$x(3-x)圖象上的點(diǎn),
且該二次函數(shù)圖象過(guò)O,M,
則當(dāng)x=$\frac{3}{2}$時(shí),二次函數(shù)取得最大值$\frac{9}{8}$,
故答案為:$\frac{9}{8}$.
點(diǎn)評(píng) 本題考查圓的方程、導(dǎo)數(shù)的幾何意義和二次函數(shù)的最值的求法,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | $\frac{3π}{4}$ | C. | π | D. | 2π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $1-\frac{π}{8}$ | B. | $\frac{π}{8}$ | C. | $1-\frac{π}{4}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com