12.如圖,⊙O:x2+y2=16,A(-2,0),B(2,0)為兩個定點,l是⊙O的一條切線,若過A,B兩點的拋 物線以直線l為準線,則該拋物線的焦點的軌跡是(  )
A.B.雙曲線C.橢圓D.拋物線

分析 焦點到A和B的距離之和等于A和B分別到準線的距離和,而距離之和為A和B的中點O到準線的距離的二倍是定值,結合橢圓的定義得焦點的軌跡方程C是以A和B為焦點的橢圓.

解答 解:由題設知,焦點到A和B的距離之和等于A和B分別到準線的距離和.
而距離之和為A和B的中點O到準線的距離的二倍,即為2r=8,
根據(jù)橢圓的定義得,焦點的軌跡方程C是以A和B為焦點的橢圓:
故選:C.

點評 本小題主要考查橢圓的定義、圓錐曲線的軌跡問題等基礎知識,考查數(shù)形結合思想、化歸與轉(zhuǎn)化思想.屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.已知x>0,y>0,lg2x+lg8y=lg4,則$\frac{1}{x}+\frac{1}{3y}$的最小值為(  )
A.2B.$2\sqrt{2}$C.4D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.函數(shù)$f(x)=\frac{{\sqrt{1+{{log}_3}x}}}{{{2^x}-4}}$的定義域為( 。
A.$(\frac{1}{3},+∞)$B.$(\frac{1}{3},2)∪(2,+∞)$C.$[\frac{1}{3},2)∪(2,+∞)$D.$[\frac{1}{3},+∞)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知集合A={1,2,3},B={2,3},則( 。
A.A=BB.B∈AC.A?BD.B?A

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知集合A={x|x 2+(2+a)x+1=0},B={x∈R|x>0},試問是否存在實數(shù)a,使得A∩B=∅?若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設f(x)=x4+ax3+bx2+cx+d,其中a、b、c、d為常數(shù).如果f(1)=10,f(2)=20,f(3)=30,那么,$\frac{1}{4}$[f(4)+f(0)]的值是( 。
A.1B.4C.7D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知實數(shù)x,y滿足ax<ay(0<a<1),則下列關系式恒成立的是( 。
A.$\frac{1}{{{x^2}+1}}>\frac{1}{{{y^2}+1}}$B.x3>y3C.sinx>sinyD.ln(x2+1)>ln(y2+1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.下列函數(shù)中,是偶函數(shù)且在(0,+∞)上為增函數(shù)的是( 。
A.y=cosxB.y=-x2+1C.y=log2|x|D.y=ex-e-x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.函數(shù)y=tan(2x+$\frac{π}{3}$)的圖象的一個對稱中心的坐標為(  )
A.($\frac{π}{12}$,0)B.($\frac{π}{6}$,0)C.($\frac{π}{4}$,0)D.($\frac{2π}{3}$,0)

查看答案和解析>>

同步練習冊答案