精英家教網 > 高中數學 > 題目詳情
已知△ABC中,∠A,∠B,∠C的對邊分別為a,b,c,若a=1,2cosC+c=2b,則△ABC的周長的取值范圍是
(2,3]
(2,3]
分析:由余弦定理求得 cosC,代入已知等式可得 (b+c)2-1=3bc,利用基本不等式求得 b+c≤2,故a+b+c≤3.再由三角形任意兩邊之和大于第三邊求得a+b+c>2,由此求得△ABC的周長的取值范圍.
解答:解:△ABC中,由余弦定理可得 2cosC=
a2+b2-c2
ab
,∵a=1,2cosC+c=2b,
1+b2-c2
b
+c=2b,化簡可得 (b+c)2-1=3bc.
∵bc≤(
b+c
2
)
2
,∴(b+c)2-1≤3×(
b+c
2
)
2
,解得 b+c≤2(當且僅當b=c時,取等號).
故a+b+c≤3.
再由任意兩邊之和大于第三邊可得 b+c>a=1,故有 a+b+c>2,故△ABC的周長的取值范圍是(2,3],
故答案為 (2,3].
點評:本題主要考查余弦定理、基本不等式的應用,三角形任意兩邊之和大于第三邊,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知△ABC中,A=60°,a=
15
,c=4,那么sinC=
2
5
5
2
5
5

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC中,A(4,2),B(1,8),C(-1,8).
(1)求AB邊上的高所在的直線方程;
(2)直線l∥AB,與AC,BC依次交于E,F,S△CEF:S△ABC=1:4.求l所在的直線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC中,a=2,b=1,C=60°,則邊長c=
3
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC中,a=2
3
,若
m
=(-cos
A
2
,sin
A
2
)
,
n
=(cos
A
2
,sin
A
2
)
滿足
m
n
=
1
2
.(1)若△ABC的面積S=
3
,求b+c的值.(2)求b+c的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC中,A,B,C的對邊分別為a,b,c,且
(AB)2
=
AB
AC
+
BA
BC
+
CA
CB

(Ⅰ)判斷△ABC的形狀,并求t=sinA+sinB的取值范圍;
(Ⅱ)若不等式a2(b+c)+b2(c+a)+c2(a+b)≥kabc,對任意的滿足題意的a,b,c都成立,求k的取值范圍.

查看答案和解析>>

同步練習冊答案