8.拋擲兩枚質(zhì)地均勻的骰子,向上的點(diǎn)數(shù)之和為7的概率是( 。
A.$\frac{1}{9}$B.$\frac{1}{6}$C.$\frac{1}{18}$D.$\frac{1}{12}$

分析 列舉出所有情況,看所求的所得點(diǎn)數(shù)之和為7情況數(shù),最后利用概率計(jì)算公式求解即可.

解答 解:易得每個(gè)骰子擲一次都有6種情況,
那么共有6×6=36種可能,
點(diǎn)數(shù)之和為7的有3,4;2,5;1,6;4,3;5,2;6,1共6種,
所以概率是$\frac{6}{36}$=$\frac{1}{6}$,
故選:B.

點(diǎn)評(píng) 本小題主要考查隨機(jī)事件、等可能事件的概率等基礎(chǔ)知識(shí),考查運(yùn)算求解能力.屬于基礎(chǔ)題.概率的求法,關(guān)鍵是找到所有存在的情況.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.盒中共有9個(gè)球,其中有3個(gè)紅球、4個(gè)黃球和2個(gè)白球,這些球除顏色外完全相同.
(Ⅰ)從盒中一次隨機(jī)取出2個(gè)球,求取出的2個(gè)球顏色相同的概率P;
(Ⅱ)從盒中一次隨機(jī)取出4個(gè)球,設(shè)X為取出的4個(gè)球中紅色的個(gè)數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,四棱錐A-BCDE中,F(xiàn)為AD的中點(diǎn),DC⊥平面ABC,CD∥BE,AB=AC=BC=CD=2BE.
(1)求證:EF⊥平面ACD;
(2)求平面ADE與平面ABD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.從5名男生和4名女生中選出4人參加辯論比賽,如果4人中男生和女生各兩人,則不同的選法種數(shù)為60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.圓O為△ABC的外接圓,半徑為2,若$\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AO}$,且|$\overrightarrow{OA}$=|$\overrightarrow{AC}$|,則$\overrightarrow{BA}•\overrightarrow{BO}$=6|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.各項(xiàng)均不相等的等差數(shù)列{an}的前四項(xiàng)的和為S4=14,且a1,a3,a7成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式an
(2)記Tn為數(shù)列{$\frac{{a}_{n-1}}{{2}^{n}}$}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=|x-a|,其中a>0.
(1)當(dāng)a=1時(shí),求不等式f2(x)≤2的解集;
(2)已知函數(shù)g(x)=f(2x+a)+2f(x)的最小值為4,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(x)=x4+2x3+4x2+cx的圖象關(guān)于直線x=m對(duì)稱,則f(x)的最小值是-$\frac{11}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,若sinAcosB=sinC,判斷△ABC的形狀.

查看答案和解析>>

同步練習(xí)冊(cè)答案