討論函數(shù)f(x)=
x-1,x<0
0,x=0
x+1,x>0
在x=0處的極限.
考點:極限及其運算
專題:導數(shù)的綜合應用
分析:
lim
x→0+
(x+1)=1,
lim
x→0-
(x-1)=-1.可得函數(shù)f(x)在x=0處的極限不存在.
解答: 解:
lim
x→0+
(x+1)=1,
lim
x→0-
(x-1)=-1.
因此函數(shù)f(x)=
x-1,x<0
0,x=0
x+1,x>0
在x=0處的極限不存在.
點評:本題考查了函數(shù)的極限與單側極限的關系,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

f(x)是定義在R上周期為2的函數(shù),在區(qū)間[-1,1]時,有f(x)=
ax+1,-1≤x<0
bx+2
x+1
,0≤x≤1
,其中a,b∈R,若f(
1
2
)=f(
3
2
)
,則a+3b的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三角形ABC中,角A、B、C所對邊分別為a,b,c,且
m
=(
cosB
,
2
),
n
=(sinB,
3
),滿足
m
n

(1)若cosA=
1
3
,求sinC的值;
(2)若b=
7
,sinA=3sinC,求三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,若a+c=2b,則cosA+cosB-cosAcosC+
1
3
sinAsinC=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2x2+bx+c
x2+1
(b<0)的值域為[1,3],求實數(shù)b、c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知m>n,a>b>0,比較ambn與anbm的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設A1,A2,…,An是平面上的n個不同的點,則滿足
MA1
+
MA2
+…+
MAn
=
0
的點M的個數(shù)為(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若x>0,則
12
x
+x的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:a是實數(shù),命題P:?x∈R,使x2+2ax-4a<0;命題Q:-4<a<0;則命題P為假命題是命題Q成立的(  )
A、充要條件
B、必要不充分條件
C、充分不必要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習冊答案