若橢圓焦點在x軸上且經(jīng)過點(-4,0),c=3,其焦點在x軸上,則該橢圓的標準方程為(  )
A、
x2
16
+
y2
9
=1
B、
x2
16
+
y2
7
=1
C、
x2
9
+
y2
16
=1
D、
x2
7
+
y2
16
=1
考點:橢圓的簡單性質
專題:圓錐曲線的定義、性質與方程
分析:設出橢圓的標準方程,根據(jù)題意求出a、b的值,即得橢圓的標準方程.
解答: 解:設橢圓的標準方程為
x2
a2
+
y2
b2
=1(a>b>0),
根據(jù)題意得,
(-4)2
a2
=1,∴a=4;
又∵a2=b2+c2,
∴b2=42-32=7;
∴橢圓的標準方程為
x2
16
+
y2
7
=1.
故選:B.
點評:本題考查了求橢圓的標準方程的問題,解題時應先設出橢圓的標準方程,根據(jù)題意,求出橢圓的標準方程來,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

有下列命題:①y=cos(x-
π
4
)cos(x+
π
4
)的圖象中相鄰兩個對稱中心的距離為π,②y=
x+3
x-1
的圖象關于點(-1,1)對稱,③關于x的方程ax2-2ax-1=0有且僅有一個實根,則a=-1,④命題p:對任意x∈R,都有sinx≤1;則¬p:存在x∈R,使得sinx>1.其中真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知方程|x2-a|-x+2=0(a>0)有兩個不等的實數(shù)根,則實數(shù)a的取值范圍是( 。
A、0<a<4B、a>4
C、0<a<2D、a>2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=ex-x-2(e≈2.72)的一個零點所在的區(qū)間是(  )
A、(1,2)
B、(0,1)
C、(-1,0)
D、(2,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設P是橢圓
x2
169
+
y2
25
=1上一點,F(xiàn)1、F2是橢圓的焦點,若|PF1|等于4,則|PF2|等于( 。
A、22B、21C、20D、13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+bx+c,其中0≤b≤4,0≤c≤4,記函數(shù)f(x)滿足條件:f(2)≤12為事件A,則事件A發(fā)生的概率為( 。
A、
1
4
B、
1
2
C、
3
8
D、
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

P為橢圓
x2
4
+
y2
3
=1
上一點,F(xiàn)1、F2為該橢圓的兩個焦點,若∠F1PF2=60°,則
.
PF1
.
PF2
等于( 。
A、3
B、
3
C、2
3
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)對?x∈R滿足f(x)=-f(2-x),且在[1,+∞)上遞增,若g(x)=f(1+x),且2g(log2a)-3g(1)≤g(log 
1
2
a),則實數(shù)a的范圍為( 。
A、(0,2]
B、(0,
1
2
]
C、[
1
2
,2]
D、[1,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐P-ABC中,PA⊥平面ABC,AB⊥AC.
(Ⅰ)求證:AC⊥PB;
(Ⅱ)設O,D分別為AC,AP的中點,點G為△OAB內(nèi)一點,且滿足
OG
=
1
3
(
OA
+
OB
)
,求證:DG∥面PBC;
(Ⅲ)若AB=AC=2,PA=4,求二面角A-PB-C的余弦值.

查看答案和解析>>

同步練習冊答案