將函數(shù)y=cos(x+
π
3
)的圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再向左平移
π
3
個(gè)單位,所得函數(shù)圖象的一個(gè)對(duì)稱中心為( 。
A、(0,0)
B、(
π
4
,0
C、(
π
2
,0
D、(π,0)
考點(diǎn):余弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)三角函數(shù)的圖象變換求出函數(shù)的解析式即可得到結(jié)論.
解答: 解:將函數(shù)y=cos(x+
π
3
)的圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到y(tǒng)=cos(
1
2
x+
π
3
),
再向左平移
π
3
個(gè)單位,得到y(tǒng)=cos[
1
2
(x+
π
3
)+
π
3
]=cos(
1
2
x+
π
2
)=-sin
1
2
x,
1
2
x=kπ,解得x=2kπ,即函數(shù)對(duì)稱中心為(2kπ,0),
當(dāng)k=0時(shí),函數(shù)的對(duì)稱中心為(0,0),
故選:A
點(diǎn)評(píng):本題主要考查三角函數(shù)對(duì)稱中心的求解,根據(jù)函數(shù)圖象變換關(guān)系求出函數(shù)的解析式是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個(gè)算法流程圖,如果輸入x的值是
1
4
,則輸出S的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AB=c,BC=a,AC=b,若cos2B+cos2C-cos2A=1成立,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的通項(xiàng)公式為an=3n-1,設(shè)數(shù)列{bn}滿足對(duì)任意自然數(shù)n都有
b1
a1
+
b2
a2
+
b3
a3
+…+
bn
an
=2n+1
恒成立.
①求數(shù)列{bn}的通項(xiàng)公式;
②求b1+b2+b3+…+b2005的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M(x,y)到定點(diǎn)F(
3
,0)的距離和它到直線x=
4
3
3
距離的比是
3
2

(Ⅰ)求點(diǎn)M(x,y)的軌跡方程;
(Ⅱ)O為坐標(biāo)原點(diǎn),過F點(diǎn)且斜率為
2
2
的直線,與點(diǎn)M的軌跡交于點(diǎn)A(x1,y1),B(x2,y2),求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

y=sinx,x∈[-π,
π
6
]的單調(diào)區(qū)間
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線l的方程為(a+2)x+y-2-a=0(a∈R)
(1)若直線l在兩坐標(biāo)軸上的截距相等,求直線l的方程;
(2)若直線l與兩坐標(biāo)軸圍成的面積是
1
2
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式組:
x2+2x-3>0
4x2-4x+1≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊在直線y=-3x上,求10sinα+
3
cosα
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案