已知等差數(shù)列{an}中,a1=-4,且a1、a3、a2成等比數(shù)列,使{an}的前n項和Sn<0時,n的最大值為( 。
分析:由題意可得,a32 =a1a2,即 (a1+2d)2 =a1(a1+d).把a1=-4 代入可得d=3,由Sn =-4n+
n(n-1)3
2
<0,求得正整數(shù)n的最大值.
解答:解:∵等差數(shù)列{an}中,a1=-4,且a1、a3、a2成等比數(shù)列,
a32 =a1a2,即 (a1+2d)2 =a1(a1+d)
把a1=-4 代入可得d=3.
∴前n項和Sn =-4n+
n(n-1)3
2
<0,解得 0<n<
11
3
,n∈N.
故n的最大值為3.
故選A.
點評:本題主要考查等比數(shù)列的定義和性質(zhì),等差數(shù)列的通項公式,前n項和公式及其應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項公式;     
(2)求數(shù)列{|an|}的前n項和;
(3)求數(shù)列{
an2n-1
}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若{an}為遞增數(shù)列,請根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習冊答案