方程兩根,且,則 ;

 

【解析】

試題分析:由已知可得,

因為,所以,所以.

但由于,所以,

,則同號;

,則都小于0。

所以,所以

考點:兩角和差公式以及正切函數(shù)的性質(zhì).

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河北省高三年級模擬考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

某學(xué)校制定學(xué)校發(fā)展規(guī)劃時,對現(xiàn)有教師進(jìn)行年齡狀況和接受教育程度(學(xué)歷)的調(diào)查,其結(jié)果(人數(shù)分布)如表:

學(xué)歷

35歲以下

35至50歲

50歲以上

本科

80

30

20

研究生

x

20

y

(1)用分層抽樣的方法在35至50歲年齡段的教師中抽取一個容量為5的樣本,將該樣本看成一個總體,從中任取2人,求至少有l(wèi)人的學(xué)歷為研究生的概率;

(2)在該校教師中按年齡狀況用分層抽樣的方法抽取N個人,其中35歲以下48人,50歲以上10人,再從這N個人中隨機(jī)抽取l人,此人的年齡為50歲以上的概率為,求x、y的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省鷹潭市高三第二次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知橢圓的右焦點為,點是橢圓上任意一點,圓是以為直徑的圓.

(1)若圓過原點,求圓的方程;

(2)寫出一個定圓的方程,使得無論點在橢圓的什么位置,該定圓總與圓相切,請寫出你的探究過程.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省鷹潭市高三第二次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

若平面內(nèi)兩個向量共線,則等于 ( )

A.      B.      C.       D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省盟校高三第二次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

某煤礦發(fā)生透水事故時,作業(yè)區(qū)有若干人員被困.救援隊從入口進(jìn)入之后有兩條巷道通往作業(yè)區(qū)(如下圖),巷道有三個易堵塞點,各點被堵塞的概率都是;巷道有兩個易堵塞點,被堵塞的概率分別為

(1)求巷道中,三個易堵塞點最多有一個被堵塞的概率;

(2)若巷道中堵塞點個數(shù)為,求的分布列及數(shù)學(xué)期望,并按照"平均堵塞點少的巷道是較好的搶險路線"的標(biāo)準(zhǔn),請你幫助救援隊選擇一條搶險路線,并說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省盟校高三第二次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

單位向量,且,則的最小值為( )

A. B.1 C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省盟校高三第二次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),的導(dǎo)函數(shù)。 (1)求函數(shù)的單調(diào)遞減區(qū)間;

(2)若對一切的實數(shù),有成立,求的取值范圍;

(3)當(dāng)時,在曲線上是否存在兩點,使得曲線在 兩點處的切線均與直線交于同一點?若存在,求出交點縱坐標(biāo)的最大值;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省盟校高三第二次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:選擇題

對于實數(shù),定義運算,運算原理如右圖所示,則式子的值為( )

A.6 B.7 C.8 D.9

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省盟校高三第一次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:選擇題

下列函數(shù)中,與函數(shù)的奇偶性、單調(diào)性均相同的是( )

A. B.   C. D.

 

查看答案和解析>>

同步練習(xí)冊答案