20.“cos2α=0”是“sinα+cosα=0”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 先求出cos2α=0成立的充要條件,從而判斷出其和sinα+cosα=0的關(guān)系即可.

解答 解:∵cos2α=(cosα+sinα)(cosα-sinα)=0,
∴sinα+cosα=0或cosα-sinα=0,
∴“cos2α=0”是“sinα+cosα=0”的必要不充分條件,
故選:B.

點(diǎn)評(píng) 本題考查了充分必要條件,考查三角函數(shù)問題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知定義域?yàn)镽的函數(shù)$f(x)=\frac{{b-{2^x}}}{{{2^{x+1}}+a}}$是奇函數(shù),則a+b=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知定義在(0,+∞)上的函數(shù)f(x)為單調(diào)函數(shù),且$f({f(x)-\frac{4}{x}})=4$,則f(1)=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知直線l過圓x2+y2-6y+5=0的圓心,且與直線x+y+5=0平行,則l的方程是( 。
A.x+y-2=0B.x-y+2=0C.x+y-3=0D.x-y+3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知f(x)=$\frac{1+2lnx}{{x}^{2}}$.
(1)求f(x)的單調(diào)區(qū)間;
(2)令g(x)=ax2-2lnx,則g(x)=1時(shí)有兩個(gè)不同的根,求a的取值范圍;
(3)存在x1,x2∈(1,+∞)且x1≠x2,使|f(x1)-f(x2)|≥k|lnx1-lnx2|成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)集合A={x|x2-x=0},B={x|log2x≤0},則A∪B=( 。
A.{1}B.[0,1]C.(0,1]D.[0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知等差數(shù)列{an}中,a3=9,a5=17,記數(shù)列$\left\{{\frac{1}{a_n}}\right\}$的前n項(xiàng)和為Sn,若S2n+1-Sn≤$\frac{m}{15},({m∈Z})$,對(duì)任意的n∈N*成立,則整數(shù)m的最小值為(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.對(duì)于數(shù)列{an},若滿足${a_1},\frac{a_2}{a_1},\frac{a_3}{a_2},…,\frac{a_n}{{{a_{n-1}}}},…$是首項(xiàng)為1,公比為2的等比數(shù)列,則a9=236

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知雙曲線C過點(diǎn)$(3,\sqrt{2})$,且與雙曲線$\frac{x^2}{6}-\frac{y^2}{2}=1$有共同的漸近線,則雙曲線C的標(biāo)準(zhǔn)方程為$\frac{x^2}{3}-{y^2}=1$.

查看答案和解析>>

同步練習(xí)冊(cè)答案