已知函數(shù)滿足, 在上恒成立.
(1)求的值;
(2)若,解不等式;
(3)是否存在實數(shù),使函數(shù)在區(qū)間上有最小值?若存在,請求出實數(shù)的值;若不存在,請說明理由.
(1),;(2)當(dāng),,當(dāng);(3)當(dāng)時,上有最小值-5.

試題分析:本題考查計算能力和分類討論的數(shù)學(xué)思想.(1)求函數(shù)的導(dǎo)數(shù),由二次函數(shù)知識求恒成立問題;(2)求導(dǎo),化為時,對b的值分類討論,分別求解;(3)對函數(shù)求導(dǎo)后,其導(dǎo)函數(shù)是一個二次函數(shù),根據(jù)對軸稱與區(qū)間的關(guān)系來分類討論.
試題解析:(1)

恒成立;
恒成立;
顯然時,上式不能恒成立;
,由于對一切則有:
,即,解得:;
,.
(2)  
得:
,即 ;
∴當(dāng),

當(dāng).
(3)假設(shè)存在實數(shù)使函數(shù)在區(qū)間 上有最小值-5.
圖象開口向上且對稱軸為
①當(dāng),此時函數(shù)在區(qū)間上是遞增的;

解得矛盾;
②當(dāng),此時函數(shù)在區(qū)間上是遞減的,而在區(qū)間上是遞增的,

解得;
.
③當(dāng),此時函數(shù)在區(qū)間上遞減的;
,即
解得,滿足
綜上知:當(dāng)時,上有最小值-5.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知某公司生產(chǎn)品牌服裝的年固定成本是10萬元,每生產(chǎn)千件,須另投入2 7萬元,設(shè)該公司年內(nèi)共生產(chǎn)該品牌服裝x千件并全部銷售完,每千件的銷售收入為R(x)萬元,且 
(1)寫出年利潤W(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該公司在這一品牌服裝的生產(chǎn)中所獲利潤最大?(注:年利潤=年銷售收入 年總成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

定義在R上的奇函數(shù)有最小正周期4,且時,
(1)求上的解析式;
(2)判斷上的單調(diào)性,并給予證明;
(3)當(dāng)為何值時,關(guān)于方程上有實數(shù)解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)上的單調(diào)增函數(shù)且為奇函數(shù),數(shù)列是等差數(shù)列,,則的值(   )
A.恒為正數(shù)B.恒為負數(shù)
C.恒為0D.可以為正數(shù)也可以為負數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)對任意的都有,且,則(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對于函數(shù),若,則稱為函數(shù)的“不動點”;若,則稱為函數(shù)的“穩(wěn)定點”.如果函數(shù)的“穩(wěn)定點”恰是它的“不動點”,那么實數(shù)的取值范圍是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),其中常數(shù)a > 0.
(1) 當(dāng)a = 4時,證明函數(shù)f(x)在上是減函數(shù);
(2) 求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)命題:函數(shù)上為減函數(shù), 命題的值域為,命題函數(shù)定義域為
(1)若命題為真命題,求的取值范圍。
(2)若為真命題,為假命題,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè) 則    

查看答案和解析>>

同步練習(xí)冊答案