設(shè)命題:函數(shù)上為減函數(shù), 命題的值域為,命題函數(shù)定義域為
(1)若命題為真命題,求的取值范圍。
(2)若為真命題,為假命題,求的取值范圍.
(1);(2)C的取值范圍為。

試題分析:(1)若命題T為真命題,則              5分
(2)若P為真 ,則c<1;若Q為真,則c="0," 或者 ;由題意有,命題P、Q中必有一個是真命題,另一個為假命題      7分
若P為真,Q為假時,則,即;      9分
若P為假,Q為真時,則                     11分
所以C的取值范圍為                            12分
點評:中檔題,本題綜合性較強,全面考查復合命題真值表,對數(shù)函數(shù)的性質(zhì),二次函數(shù)的圖象和性質(zhì)。解題的關(guān)鍵之一,是認識到為真命題,為假命題,意味著P,Q有一個真命題,一個假命題。利用對數(shù)函數(shù)的性質(zhì)研究命題P,Q。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)滿足, 在上恒成立.
(1)求的值;
(2)若,解不等式;
(3)是否存在實數(shù),使函數(shù)在區(qū)間上有最小值?若存在,請求出實數(shù)的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列四組函數(shù)中表示同一函數(shù)的是(  )
A.,B.
C.,D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)是不為零的實數(shù),為自然對數(shù)的底數(shù)).
(1)若曲線有公共點,且在它們的某一公共點處有共同的切線,求k的值;
(2)若函數(shù)在區(qū)間內(nèi)單調(diào)遞減,求此時k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若函數(shù)f(x)在定義域D內(nèi)某區(qū)間I上是增函數(shù),且在I上是減函數(shù),則稱y=f(x)在I 上是“弱增函數(shù)”.已知函數(shù)h(x)=x2-(b-1)x+b在(0,1]上是“弱增函數(shù)”,則實數(shù)b的值為         

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列函數(shù)中,最小值為4的函數(shù)是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當時,函數(shù)恒成立,求實數(shù)的取值范圍;
(3)設(shè)正實數(shù)滿足.求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知偶函數(shù)f(x)(x∈R),當時,f(x)= -x(2+x),當時,f(x)=(x-2)(a-x)().關(guān)于偶函數(shù)f(x)的圖象G和直線:y=m()的3個命題如下:
當a=2,m=0時,直線與圖象G恰有3個公共點;
當a=3,m=時,直線與圖象G恰有6個公共點;
,使得直線與圖象G交于4個點,且相鄰點之間的距離相等.其中正確命題的序號是(A)
A. ①②     B. ①③     C. ②③     D. ①②③

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)函數(shù),其中,區(qū)間
(Ⅰ)求的長度(注:區(qū)間的長度定義為);
(Ⅱ)給定常數(shù),當時,求長度的最小值.

查看答案和解析>>

同步練習冊答案