設(shè)函數(shù)(x∈R),其中m>0為常數(shù)
(1)當(dāng)m=1時,曲線y=f(x)在點(1,f(1))處的切線斜率;
(2)求函數(shù)的單調(diào)區(qū)間與極值.
【答案】分析:(1)由已知中函數(shù)f(x)=-x3+x2+(m2-1)x,根據(jù)m=1,我們易求出f(1)及f′(1)的值,代入點斜式方程即可得到答案.
(2)由已知我們易求出函數(shù)的導(dǎo)函數(shù),令導(dǎo)函數(shù)值為0,我們則求出導(dǎo)函數(shù)的零點,根據(jù)m>0,我們可將函數(shù)的定義域分成若干個區(qū)間,分別在每個區(qū)間上討論導(dǎo)函數(shù)的符號,即可得到函數(shù)的單調(diào)區(qū)間.
解答:解:(1)當(dāng)m=1時,f(x)=-x3+x2,f′(x)=-x2+2x,故f′(1)=1.
所以曲線y=f(x)在點(1,f(1))處的切線的斜率為1.
(2)f′(x)=-x2+2x+m2-1.
令f′(x)=0,解得x=1-m,或x=1+m.
因為m>0,所以1+m>1-m.
當(dāng)x變化時,f′(x),f(x)的變化情況如下表:
x(-∞,1-m)1-m(1-m,1+m)1+m(1+m,+∞)
f′(x)-+-
f(x)遞增極小值遞增極大值遞減
所以f(x)在(-∞,1-m),(1+m,+∞)內(nèi)是減函數(shù),在(1-m,1+m)內(nèi)是增函數(shù).
函數(shù)的極小值為:f(1-m)=
函數(shù)的極大值為:f(1+m)=
點評:本題考查的知識點是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究曲線上某點切線方程,其中根據(jù)已知函數(shù)的解析式求出導(dǎo)函數(shù)的解析式是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=log2(
1+x
1-ax
)
(a∈R),若f(-
1
3
)=-1

(1)求f(x)解析式并判斷其奇偶性;
(2)當(dāng)x∈[-1,0)時,求f(3x)的值域;
(3)g(x)=log
2
1+x
k
,若x∈[
1
2
,
2
3
]
時,f(x)≤g(x)有解,求實數(shù)k取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=
3
4
-
1
2
sinxcosx-
3
2
sin2
x,將其圖象向左移
π
4
個單位,并向上移
1
2
個單位,得到函數(shù)f(x)=acos2(x+φ)+b(a>0,b∈R,|φ|≤
π
2
)
的圖象.
(1)求實數(shù)a,b,φ的值;
(2)設(shè)函數(shù)φ(x)=g(x)-
3
f(x),x∈[0,
π
2
]
,求函數(shù)φ(x)的單調(diào)遞增區(qū)間和最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,f(x)=a•ex是定義在R上的函數(shù),函數(shù)f-1(x)=ln
x
a
(x∈(0,+∞))
,并且曲線y=f(x)在其與坐標(biāo)軸交點處的切線和曲線y=f-1(x)在其與坐標(biāo)軸交點處的切線互相平行.
(1)求a的值;
(2)設(shè)函數(shù)g(x)=
x-m
f-1(x)
,當(dāng)x>0且x≠1時,不等式g(x)>
x
恒成立,求實數(shù)m的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
12
ax2+bx
(a≠0).
(1)當(dāng)a=-2時,函數(shù)h(x)=f(x)-g(x)在其定義域內(nèi)是增函數(shù),求b的取值范圍;
(2)在(1)的條件下,設(shè)函數(shù)φ(x)=e2x-bex(e為自然對數(shù)的底數(shù)),x∈[0,ln2],求函數(shù)φ(x)的最小值;
(3)令V(x)=2f(x)-x2-kx(k∈R),如果V(x)的圖象與x軸交于A(x1,0),B(x2,0)(0<x1<x2)兩點,且線段AB的中點為C(x0,0),求證:V′(x0)≠0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)0<a<b,f(x)=(x-a)2(x-b),(x∈R),其導(dǎo)函數(shù)f'(x)的圖象可能是( 。

查看答案和解析>>

同步練習(xí)冊答案