函數(shù)y=cos(2x-),在區(qū)間[-,π]上的簡圖是( )
A.
B.
C.
D.
【答案】分析:利用誘導(dǎo)公式將y=cos(2x-)轉(zhuǎn)化為y=sin(2x-),通過對2x-范圍的分析,通過對x取特值排除即可得到答案.
解答:解:∵y=cos(2x-
=cos(-2x)
=sin[-(-2x)]
=sin(2x-),
又x∈[-,π],
∴2x-∈[-,],
∴當x=-時,y=sin(-π-
=-sin(π+
=sin
=>0,故可排除B,D;
又當x=-時,y=sin(2x-)=sin(-π)=0,可排除C,
故選A.
點評:本題考查正弦函數(shù)的圖象與性質(zhì),考查誘導(dǎo)公式的作用,突出考查分析與推理,考查排除法在選擇題中的作用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x∈[0,
π
3
],求函數(shù)y=cos(2x-
π
3
)+2sin(x-
π
6
)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,真命題的是

①函數(shù)y=cos(2x+
π
2
)+1
的圖象的一個對稱中心是(-
π
2
,0)
;
②要得到函數(shù)y=cos(-
π
3
+2x)
的圖象,只需將函數(shù)y=sin2x的圖象向左平移
π
12
個單位;
α=
π
4
+2kπ
是tanα=1的充要條件;
④函數(shù)y=sinx-
3
cosx  x∈[-π,0]
的單調(diào)遞增區(qū)間是[-
5
6
π, -
π
6
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要得到函數(shù)y=sin2x的圖象,只需要將函數(shù)y=cos(2x-
π
3
)的圖象( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①當α=4.5π時,函數(shù)y=cos(2x+α)是奇函數(shù);
②函數(shù)y=sinx在第一象限內(nèi)是增函數(shù);
③函數(shù)f(x)=sin2x-(
2
3
)|x|+
1
2
的最小值是-
1
2
;
④存在實數(shù)α,使sinα•cosα=1;
⑤函數(shù)y=
3
sinωx+cosωx(ω>0)
的圖象關(guān)于直線x=
π
12
對稱?ω=4k(k∈N*).
其中正確的命題序號是
①③
①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=cos(2x-
6
),在區(qū)間[-
π
2
,π]上的簡圖是(  )

查看答案和解析>>

同步練習(xí)冊答案